
Introduction to Multimedia Drivers
The following topics provide an introduction to writing installable multimedia drivers for Windows
NT:

• Types of Multimedia Devices
• User-Mode Multimedia Drivers
• Kernel-Mode Multimedia Drivers
• Multimedia Dynamic-Link Libraries
• Designing Multimedia Drivers
• Building Multimedia Drivers
• Installing Multimedia Drivers
• Configuring Multimedia Drivers
• Multimedia Driver Reference

These topics provide information that pertains to all types of multimedia devices and drivers. For
specific information about writing drivers for a certain type of multimedia device, refer to the
topics listed in Types of Multimedia Devices.

Types of Multimedia Devices
Each piece of multimedia hardware can be classified as being either an audio device, a video
capture device, or a positioning device. Each of these classifications can be broken down further,
as follows:

• Audio devices include waveform devices, MIDI devices, mixers, and auxiliary audio devices.
For information about writing drivers for audio devices, see Audio Device Drivers.
For information about writing drivers for compressing audio data, see Audio Compression
Manager Drivers.

• Video capture devices capture video images that can be stored in a disk file and played back
later.
For information about writing drivers for video capture devices, see Video Capture Device
Drivers.
For information about writing drivers for compressing video data, see Video Compression
Manager Drivers.

• Positioning devices, such as joysticks, light pens, and touch screens, are devices that can
establish a screen position.
For information about writing drivers for positioning devices, see Joystick Drivers.

For information about writing drivers for the Media Control Interface (MCI), which is a high-level
application interface to all types of multimedia devices, see MCI Drivers.

User-Mode Multimedia Drivers
User-mode multimedia drivers executing under Windows NT have the following characteristics:

• They execute in user mode.
• They export user-mode driver entry points that are called by applications and other clients to

request I/O operations.

• They communicate with kernel-mode multimedia drivers by calling Win32 functions which, in
turn, call functions in the Windows NT Executive. The Windows NT Executive functions
provide the context switch from user mode to kernel mode.

User-Mode Multimedia Drivers
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 1 Windows NT DDK

Typically, user-mode drivers call CreateFile to open a device instance. Then they make
numerous calls to DeviceIoControl to send I/O control codes to the kernel-mode driver. Some
drivers also call the ReadFileEx and WriteFileEx functions to transfer data blocks. Calling
CloseHandle closes the device instance. (All of these functions are described in the Win32
SDK.)
User-mode drivers do not generally call these Win32 functions directly. Instead, they typically
call functions in support libraries, which in turn call the Win32 functions. The support libraries
are described in the chapters discussing the various driver types. The chapters are listed in
Types of Multimedia Devices.

User-mode drivers do not necessarily communicate with a kernel-mode driver  some
communicate with other user-mode drivers. For example some MCI drivers call Win32 Audio
API functions to communicate with user-mode audio device drivers.

Because user-mode Windows NT drivers run under the Windows NT Win32 Subsystem and call
Win32 API functions described in the Win32 SDK, these drivers are sometimes called
Win32-based drivers.

For information about designing a user-mode multimedia driver, see Designing a User-Mode
Multimedia Driver.

Kernel-Mode Multimedia Drivers
Kernel-mode multimedia drivers executing under Windows NT have the following characteristics:

• They execute in kernel mode.
• They export kernel-mode driver entry points that are called by the Windows NT Executive for

performing I/O operations requested by user-mode multimedia drivers.

• They are implemented as services under the control of the Windows NT Service Control
Manager.

• They communicate with device hardware by calling functions in the Windows NT Executive.
The I/O Manager and the Hardware Abstraction Layer (HAL), both of which are parts of the
Windows NT Executive, provide driver compatibility across the various hardware platforms
supported by Windows NT.
Kernel-mode drivers often do not call Windows NT Executive functions directly. Instead, they
might call functions in support libraries, which in turn call the Executive functions. The support
libraries are described in the chapters discussing the various driver types. The chapters are
listed in Types of Multimedia Devices.

For information about designing a kernel-mode multimedia driver, see Designing a Kernel-Mode
Multimedia Driver.

Multimedia Dynamic-Link Libraries
The following dynamic-link libraries export the APIs that clients use to access multimedia drivers.

winmm.dll
The winmm.dll dynamic-link library exports several Win32 multimedia APIs, described in the
Win32 SDK, including the following:

• Functions for accessing audio device drivers (wave-prefixed, midi-prefixed, mixer-prefixed,
and aux-prefixed functions).

• Functions for accessing MCI drivers (mci-prefixed functions).
• Functions for accessing joystick drivers (joy-prefixed functions).
• Functions for sending specific messages to a user-mode driver's DriverProc function

(OpenDriver, SendDriverMessage, and CloseDriver).

Multimedia Dynamic-Link Libraries
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 2 Windows NT DDK

Additionally, winmm.dll exports DefDriverProc, which user-mode drivers can call for default
processing of the standard driver messages.

msacm32.dll
The msacm32.dll dynamic-link library exports the audio compression functions that are described
in the Win32 SDK and are used to send messages to Audio Compression Manager drivers.

avicap32.dll
The avicap32.dll dynamic-link library exports the AVI capture window class, which is described in
the Win32 SDK and which is used to send messages to video capture device drivers.

msvfw32.dll
The msvfw32.dll dynamic-link library exports the following multimedia software components:

• Functions described in the Video for Windows Development Kit, which are used to send
messages to video capture device drivers.

• The Video Compression Manager, which sends messages to Video Compression Manager
drivers.

• The MCIWnd window class, which is described in the Win32 SDK and which controls
multimedia devices by sending messages to MCI drivers.

• The DRAWDIB functions, which are described in the Win32 SDK and which provide
capabilities for high-performance drawing of device-independent bitmaps (DIBs).

Designing Multimedia Drivers
This section provides the following topics about designing user-mode multimedia drivers and
kernel-mode multimedia drivers:

• Do you Need a New Driver?
• Designing a User-Mode Multimedia Driver
• Designing a Kernel-Mode Multimedia Driver

Do you Need a New Driver?
For a new piece of multimedia hardware, you must decide if you need both a new user-mode
multimedia driver and a new kernel-mode multimedia driver. If a currently available user-mode
driver allows applications to access all of the functionality provided by the new hardware, then you
do not need to write a new user-mode driver. For example, the standard audio driver, mmdrv.dll,
might provide all the necessary interfaces to access all the features of a new sound card. In this
case, only a new kernel-mode driver is necessary. More typically, new hardware requires
development of a new user-mode driver in order to handle the hardware's unique configuration
requirements. New user-mode drivers can be easily written by modifying sample drivers provided
with this DDK.

New hardware almost always requires a new kernel-mode driver, because the kernel-mode driver
contains information about a device's registers and hardware buffers. Occasionally, a new
user-mode driver is written that does not require support from a new kernel-mode driver. For
example, the MCICDA CD audio driver uses the standard CD-ROM file system, so it does not
require a unique underlying kernel-mode driver.

If your device can be connected to several different buses, you do not need a different
kernel-mode driver for each bus. The Windows NT Hardware Abstraction Layer (HAL) insulates
the kernel-mode driver from the bus. The Kernel-Mode Drivers Design Guide provides extensive
general information about the design of kernel-mode drivers. Additionally, specific information
about designing kernel-mode multimedia drivers is provided in the chapters discussing the
multimedia driver types. The chapters are listed in Types of Multimedia Devices.

Designing a User-Mode Multimedia Driver
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 3 Windows NT DDK

Designing a User-Mode Multimedia Driver
This section provides the following topics about designing a user-mode multimedia driver:

• User-Mode Driver Entry Points
• Standard Driver Messages
• Customized Driver Messages
• Driver Instances
• Character Strings

For additional information about designing user-mode drivers, see the chapters discussing the
various driver types. The chapters are listed in Types of Multimedia Devices.

User-Mode Driver Entry Points
Applications access user-mode driver capabilities by passing messages to standard driver entry
points.

All Win32-based user-mode drivers must export an entry point function called DriverProc. This
function receives a set of messages known as the standard driver messages. Generally, a
user-mode driver's DriverProc function also recognizes additional customized driver messages.

A default message handler, called DefDriverProc, is provided within winmm.dll. Every user-mode
driver should call DefDriverProc from within its DriverProc function, if it receives an
unrecognized or unsupported message.

User-mode audio device drivers provide additional entry point functions.

All driver entry points must be exported in a module definition (.def) file.

Standard Driver Messages
Every user-mode driver must export a DriverProc function. Each DriverProc function must
recognize a set of standard driver messages, which are defined in mmsystem.h. A driver receives
the following standard messages, in the order listed, when an application uses the driver to
perform input or output operations.

Message Operation Performed by Driver
DRV_LOAD Performs post-load operations.
DRV_ENABLE No operations performed under Windows NT.
DRV_OPEN Opens a driver instance.
DRV_CLOSE Closes a driver instance.
DRV_DISABLE No operations performed under Windows NT.
DRV_FREE Performs pre-unload operations.

Additionally, a driver can receive the following standard messages, which are typically sent from a
Control Panel application during installation and configuration operations.

Message Operation Performed by Driver
DRV_INSTALL Installs the kernel-mode driver.
DRV_PNPINSTALL Installs a kernel-mode driver, using Plug and Play

configuration information.
DRV_CONFIGURE Obtains configuration parameters.
DRV_QUERYCONFIGURE Indicates whether configuration parameters can be

modified.

Although applications can send standard driver messages directly by calling
SendDriverMessage, described in the Win32 SDK, typically they do not. Instead, they call
functions provided by higher level multimedia APIs. These APIs in turn act as clients to the

Standard Driver Messages
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 4 Windows NT DDK

user-mode drivers and send messages by:

• Calling SendDriverMessage, to directly send any of the standard messages.
• Calling OpenDriver, described in the Win32 SDK. This function calls SendDriverMessage to

send DRV_LOAD and DRV_ENABLE messages, if the driver has not been previously loaded,
and then to send DRV_OPEN.

• Calling CloseDriver, described in the Win32 SDK. This function calls SendDriverMessage to
send DRV_CLOSE and, if there are no other open instances of the driver, to also send
DRV_DISABLE and DRV_FREE.

Besides supporting the standard driver messages, a user-mode multimedia driver's DriverProc
function generally also supports a set of customized driver messages.

Customized Driver Messages
Besides supporting the standard driver messages, a user-mode driver's DriverProc function often
supports additional customized messages that are specific to each multimedia device type.
(User-mode audio device drivers support customized messages by providing additional entry
point functions.)

Although applications can send customized driver messages directly by calling
SendDriverMessage, described in the Win32 SDK, typically they do not. Instead, they call
functions provided by higher level multimedia APIs. These APIs in turn act as clients to the
user-mode drivers and send customized messages by calling SendDriverMessage.

Customized driver messages are described in the chapters discussing the various driver types.
The chapters are listed in Types of Multimedia Devices.

Driver Instances
The Win32 multimedia APIs and the multimedia dynamic-link libraries allow multiple clients to
simultaneously open a user-mode driver. You can choose whether to allow multiple open driver
instances, as follows:

• If you want to allow multiple open instances, your user-mode driver should define a linked list
of dynamically allocated structures. All instance data should be stored in this list, and you
should not use any static or global variables. When the driver's DriverProc function receives a
DRV_OPEN message, it should:
1. Allocate memory space for a structure instance.
2. Add the structure instance to the linked list.
3. Store instance data in the new list entry.
4. Specify the entry's number or address as the return value for the DriverProc function.

Subsequent calls to DriverProc will include the list entry's identifier as its dwDriverID
argument. The sample audio device drivers use this technique, although they use the
customized audio driver entry points and messages instead of DriverProc and DRV_OPEN.
If a user-mode driver allows multiple instances, the kernel-mode driver is usually responsible
for rejecting conflicting requests for access to the hardware.

• If you do not want to allow multiple open instances, your driver can set a flag the first time it
receives a DRV_OPEN message. When subsequent DRV_OPEN messages are received, the
driver can provide an error return value for DriverProc until a DRV_CLOSE message is
received, at which point it can clear the flag. The sample video capture device drivers use this
technique.

Character Strings
Under Windows NT, character strings consist of Unicode characters. All strings passed between
clients and drivers are Unicode strings.

Character Strings
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 5 Windows NT DDK

The Win32 SDK provides numerous articles on defining and using Unicode strings.

Designing a Kernel-Mode Multimedia Driver
This section provides the following topic for designing a kernel-mode multimedia driver:

• Kernel-Mode Driver Entry Points

For additional information about designing kernel-mode drivers, see the chapters discussing the
various driver types. The chapters are listed in Types of Multimedia Devices.

Kernel-Mode Driver Entry Points
All kernel-mode multimedia drivers must export a DriverEntry function. They must also fill in the
Windows NT device object's dispatch table.

DriverEntry in Kernel-Mode Multimedia Drivers
All kernel-mode multimedia drivers must export a DriverEntry function, which is the first function
executed after the driver is loaded. (The driver is loaded as a result of being installed by a
user-mode driver. See Installing a Kernel-Mode Multimedia Driver.)

DriverEntry for multimedia drivers should perform such installation-time operations as obtaining
hardware configuration parameter values from the registry, reserving system resources, and
verifying that device hardware is accessible.

For more information about the DriverEntry function, see the chapters discussing the various
driver types. The chapters are listed in Types of Multimedia Devices.

The Driver Object's Dispatch Table
Before Windows NT calls a kernel-mode driver's DriverEntry function, it creates a driver object. It
then passes the driver object's address as an input argument to DriverEntry for multimedia
drivers. The kernel-mode driver is responsible for filling in the driver object's MajorFunction
member, which is a dispatch table representing the various I/O control codes that a user-mode
driver can send to a kernel-mode driver. For more information about driver objects, which are
defined by the DRIVER_OBJECT structure, see the Kernel-Mode Drivers Reference.

Kernel-mode multimedia drivers do not always fill in the dispatch table directly. Sometimes,
multimedia driver support libraries take care of this operation. The support libraries are described
in the chapters discussing the various driver types. The chapters are listed in Types of Multimedia
Devices.

Building Multimedia Drivers
To build a multimedia driver, you should use the BUILD utility, which is described in the
Programmer's Guide. For more information, see the following topics:

• Building a User-Mode Multimedia Driver
• Building a Kernel-Mode Multimedia Driver

Building a User-Mode Multimedia Driver
To build user-mode drivers, refer to the description of the BUILD utility in the Programmer's
Guide. You must provide a file named makefile and a file named sources, and place them in the
directory path containing your source files. Refer to the makefile and sources files provided with
the source code for the sample drivers in this DDK.

All user-mode multimedia drivers must be linked with winmm.dll. Additional libraries are provided
for the various device and driver types and are referred to in the chapters describing each driver
type. The chapters are listed in Types of Multimedia Devices.

Building a User-Mode Multimedia Driver
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 6 Windows NT DDK

All user-mode multimedia drivers must include the mmystem.h header file. Additional header files
are provided for the various device and driver types and are referred to in the chapters describing
each driver type.

Because user-mode drivers are dynamic-link libraries, their file extension should generally be .dll.
(This is not a requirement and, for example, Audio Compression Manager drivers have an
extension of .acm.) If you provide both a 16-bit and a 32-bit version of your driver, append 32 to
the file name for the 32-bit version.

Building a Kernel-Mode Multimedia Driver
To build kernel-mode drivers, refer to the description of the BUILD utility in the Programmer's
Guide. You must provide a file named makefile and a file named sources, and place them in the
directory path containing your source files. Refer to the makefile and sources files provided with
the source code for the sample drivers in this DDK.

Libraries and header files are provided for the various device and driver types and are referred to
in the chapters describing each driver type. The chapters are listed in Types of Multimedia
Devices.

Kernel-mode multimedia drivers for Windows NT must have a file extension of .sys.

Installing Multimedia Drivers
Driver installation procedures are described in the Windows NT DDK Programmer's Guide. For
multimedia drivers not supplied by Microsoft, installation is accomplished by running the
Multimedia applet in the Control Panel. This section provides the following topics:

• Installing a User-Mode Multimedia Driver
• Installing a Kernel-Mode Multimedia Driver

Installing a User-Mode Multimedia Driver
Windows NT users with Administrator privilege can install non-Microsoft multimedia drivers by
running the Control Panel's Multimedia applet. The Multimedia applet reads oemsetup.inf files to
determine which files to install. To allow the Multimedia applet to install your user-mode driver,
you must provide an oemsetup.inf file identifying the user-mode driver. For more information, see
Using oemsetup.inf Files with Multimedia Drivers.

Using oemsetup.inf Files with Multimedia Drivers
The driver's installation medium must include an oemsetup.inf file. A general discussion of
oemsetup.inf files is provided in the Programmer's Guide. When you use the Multimedia applet in
the Control Panel to install a multimedia driver, the Multimedia applet reads the oemsetup.inf file
in order to determine which driver files to install. To understand how oemsetup.inf files must be
constructed for multimedia drivers, look at the following example:

[Source Media Descriptions]
 1 = "Sound Blaster Driver" , TAGFILE = disk1

[Installable.Drivers]
soundblaster = 1:sndblst.dll, "wave,MIDI,aux,mixer", "Creative Labs Sound Blaster 1.X, Pro, 16" ,,,

[soundblaster]
1:sndblst.sys
The [Source Media Descriptions] section identifies the load medium, as described in the
Programmer's Guide.

Next is the [Installable.Drivers] section, which is required for multimedia drivers installed using
the Multimedia Applet. Each line under this section is a driver profile. Each driver profile describes

Using oemsetup.inf Files with Multimedia Drivers
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 7 Windows NT DDK

a user-mode driver. A driver profile consists of six fields, separated by commas. The first three
fields are:

1. Source medium and user-mode driver filename
2. List of supported device types, also known as aliases
3. Driver description

In the example, the "1:sndblst.dll" field indicates that the driver's file name is sndblst.dll, located
on source medium 1. This file will be copied to the system's \system32 subdirectory.

The next field lists all of the device types (aliases) supported by the driver. The Multimedia applet
creates a registry entry for each device type. It would create the following entries for the example
.inf file:

wave : REG_SZ : sndblst.dll
MIDI : REG_SZ : sndblst.dll
aux : REG_SZ : sndblst.dll
mixer : REG_SZ : sndblst.dll

If the alias already exists in the registry path, a number is appended to the alias string. The
entries are placed in the registry path HKEY_LOCAL_MACHINE \SOFTWARE \Microsoft
\Windows NT \CurrentVersion \Drivers32.

The third field is the driver's description, which is the description that is displayed by the
Multimedia Applet. The remaining fields are not used.

The [soundblaster] section name matches the name given to the profile entry. This section lists
additional files that need to be copied. Include your kernel-mode driver in this section. The
Multimedia Applet copies files with an extension of .sys into the \system32\drivers subdirectory,
and copies all other files into the \system32 subdirectory.

After the files have been copied, the Multimedia applet sends DRV_LOAD, DRV_ENABLE,
DRV_OPEN, DRV_INSTALL, DRV_QUERYCONFIGURE, DRV_CONFIGURE, DRV_CLOSE,
DRV_DISABLE, and DRV_FREE messages to the user-mode driver, in that order.

Sample oemsetup.inf files are included with the source code provided with this DDK.

Installing a Kernel-Mode Multimedia Driver
If you list your kernel-mode driver in your oemsetup.inf file, the Multimedia applet installs it for
you by calling the Win32 CreateService function. For more information about oemsetup.inf files,
see Using oemsetup.inf Files with Multimedia Drivers.

Additionally, the user-mode driver can install the kernel-mode driver by either calling
CreateService, or by calling one of the functions in the driver support libraries. These libraries are
described in the chapters discussing the various driver types. The chapters are listed in Types of
Multimedia Devices.

Configuring Multimedia Drivers
Drivers typically store configuration information in the Windows NT Registry. Multimedia drivers
can optionally require two types of configuration parameters  hardware configuration
parameters and user configuration parameters.

Hardware configuration parameters represent values that a kernel-mode driver needs in order to
access device hardware. For information about storing these parameters, see Storing Hardware
Configuration Parameters.

User configuration parameters represent values that a user-mode or kernel-mode driver needs in
order to support user-controllable runtime options. For information about storing these
parameters, see Storing User Configuration Parameters.

Storing Hardware Configuration Parameters
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 8 Windows NT DDK

Storing Hardware Configuration Parameters
Kernel-mode drivers generally require hardware configuration parameters, such a device's
interrupt number and DMA channel, that must be supplied by a system administrator. The
user-mode driver obtains values for these parameters by displaying a dialog box in response to a
DRV_CONFIGURE message. The user-mode driver stores the parameter values in the Windows
NT Registry, where they are accessible to the kernel-mode driver.

Because kernel-mode drivers are treated as services under Windows NT, their parameters are
stored under the registry's \Services key. The path to the \Services key is
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services.

Under \Services, there is a subkey for each installed kernel-mode driver. For multimedia drivers,
the registry structure is as follows:

 HKEY_LOCAL_MACHINE
 SYSTEM
 CurrentControlSet
 Services
 DriverName
 Type
 Group
 ErrorControl
 Start
 Tag
 Parameters
 Device0
 Interrupt
 Port
 DMA Channel
 (Etc.)
 Device1
 Interrupt
 Port
 DMA Channel
 (Etc.)
The Service Control Manager creates and maintains DriverName, along with the Type, Group,
ErrorControl, Start, and Tag subkeys. User-mode multimedia drivers provide the Parameters
and underlying subkeys, as necessary. Use the Interrupt, Port, and DMA Channel value names
to store interrupt levels, port addresses, and DMA channels.

Drivers can create and modify registry key values by calling Win32 functions, or by using
functions provided in the driver support libraries. The support libraries are described in the
chapters discussing the various driver types. The chapters are listed in Types of Multimedia
Devices.

Storing User Configuration Parameters
Some multimedia drivers allow each user to specify configuration options. For example, a video
capture driver might allow each user to specify video display color values. User-mode drivers
should obtain user configuration parameter values and store them in the registry under a subkey
of the registry path HKEY_CURRENT_USER\Software\Microsoft\Multimedia. For more
information about storing user configuration parameters, see the chapters discussing the various
driver types. Those chapters are listed in Types of Multimedia Devices.

Multimedia Driver Reference
This section provides the following topics:

Multimedia Driver Reference
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 9 Windows NT DDK

• Messages, Multimedia Drivers
• Structures, Multimedia Drivers
• Functions, Multimedia Drivers

The messages, structures, and functions described in this section are common to multimedia
drivers for all device types. For information about additional messages, structures, and functions
for specific device types, see the chapters discussing the various driver types. Those chapters are
listed in Types of Multimedia Devices.

Messages, Multimedia Drivers
This section describes the standard driver messages that are received by user-mode multimedia
drivers. The messages are listed in alphabetic order, and are defined in mmsystem.h or mmddk.h.

DRV_CLOSE
The DRV_CLOSE message requests a user-mode multimedia driver to close the specified driver
instance.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
DRV_CLOSE

lParam1
Contains the lParam1 parameter from the CloseDriver function. Currently not used. Set to
zero.

lParam2
Contains the lParam2 parameter from the CloseDriver function. Currently not used. Set to
zero.

Return Value
The driver should return a nonzero value if the operation succeeds. Otherwise it should return
zero.

Comments
The DRV_CLOSE message is one of the standard driver messages. A client sends the message
by calling the driver's DriverProc entry point, passing the specified parameter values.

When a driver receives a DRV_CLOSE message, it should close the specified driver instance.
Other driver instances might still be open.

DRV_CONFIGURE
The DRV_CONFIGURE message requests a user-mode multimedia driver to display a dialog box
that allows administrators to modify the driver's hardware configuration parameters.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

DRV_CONFIGURE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 10 Windows NT DDK

uMsg
DRV_CONFIGURE

lParam1
Handle to the parent window the driver should use when creating a configuration dialog box.

lParam2
If not null, specifies the address of a DRVCONFIGINFO structure.

Return Value
The driver should provide one of the following return values:

DRVCNF_CANCEL The user canceled the configuration dialog box.
DRVCNF_OK The configuration operation was successful.
DRVCNF_RESTART The configuration operation was successful. The new

configuration does not take effect until Windows NT is restarted.

Comments
The DRV_CONFIGURE message is one of the standard driver messages. A client sends the
message by calling the driver's DriverProc entry point, passing the specified parameter values.
Typically, this message is sent by the Control Panel's Multimedia applet.

Drivers display a dialog box to obtain configuration parameters from the system administrator.
Your driver must confirm that the client has Administrator privilege.

Configuration parameters typically include information the kernel-mode driver needs in order to
access the hardware, such as an interrupt number, DMA channel, and port address. After
obtaining this information from the dialog box, the user-mode driver stores it in the registry, as
described in Storing Hardware Configuration Parameters, where it is accessible to the
kernel-mode driver.

Drivers receive a DRV_OPEN message before receiving DRV_CONFIGURE.

Some drivers combine installation and configuration operations into one step and perform them
upon receipt of either a DRV_INSTALL or a DRV_CONFIGURE message.

If the driver returns DRVCNF_RESTART, you can assume that the caller will display a message
telling the administrator to restart Windows NT.

You can assume that the Control Panel's Multimedia applet will not install a driver that cannot be
configured. When installing a driver, the Multimedia applet sends a DRV_CONFIGURE message
immediately after sending DRV_INSTALL. If the driver returns DRVCNF_CANCEL in response to
DRV_CONFIGURE, the driver is not installed.

DRV_DISABLE
The DRV_DISABLE message causes a Windows NT user-mode multimedia driver to just return a
nonzero value (see the following Comments section).

Parameters
dwDriverID

Driver instance identifier. This value is zero for the DRV_DISABLE message.
hDriver

Driver handle.
uMsg

DRV_DISABLE
lParam1

Not used. Set to zero.
lParam2

Not used. Set to zero.

DRV_DISABLE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 11 Windows NT DDK

Return Value
The driver should return a nonzero value.

Comments
The DRV_DISABLE message is one of the standard driver messages. A client sends the
message by calling the driver's DriverProc entry point, passing the specified parameter values.

Windows 95 drivers respond to the DRV_DISABLE message by disabling hardware. Because
hardware access under Windows NT is controlled by kernel-mode drivers, Windows NT
user-mode drivers do not perform any operations when they receive a DRV_DISABLE message.

DRV_ENABLE
The DRV_ENABLE message causes a Windows NT user-mode multimedia driver to just return a
nonzero value (see Comments section below).

Parameters
dwDriverID

Driver instance identifier. This value is zero for the DRV_ENABLE message.
hDriver

Driver handle.
uMsg

DRV_ENABLE
lParam1

Not used. Set to zero.
lParam2

Not used. Set to zero.

Return Value
The driver should return a nonzero value.

Comments
The DRV_ENABLE message is one of the standard driver messages. A client sends the message
by calling the driver's DriverProc entry point, passing the specified parameter values.

Windows 95 drivers respond to the DRV_ENABLE message by enabling hardware. Because
hardware access under Windows NT is controlled by kernel-mode drivers, Windows NT
user-mode drivers do not perform any operations when they receive a DRV_ENABLE message.

DRV_FREE
The DRV_FREE message requests a user-mode multimedia driver to perform pre-unload
operations.

Parameters
dwDriverID

Driver instance identifier. This value is zero for the DRV_FREE message.
hDriver

Driver handle.
uMsg

DRV_FREE
lParam1

Not used. Set to zero.
lParam2

Not used. Set to zero.

DRV_FREE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 12 Windows NT DDK

Return Value
The driver should return a nonzero value if the operation succeeds. Otherwise it should return
zero.

Comments
The DRV_FREE message is one of the standard driver messages. A client sends the message by
calling the driver's DriverProc entry point, passing the specified parameter values.

User-mode drivers receive the DRV_FREE message just prior to being freed (unloaded) from
memory. It is the last message a driver receives before being unloaded. The driver should release
acquired system resources.

Drivers receive DRV_CLOSE and DRV_DISABLE messages before receiving DRV_FREE.

DRV_INSTALL
The DRV_INSTALL message requests a user-mode multimedia driver to allow a system
administrator to perform installation operations.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
DRV_INSTALL

lParam1
Specifies the handle to the parent window the driver should use when creating a configuration
dialog box.

lParam2
If not null, specifies the address of a DRVCONFIGINFO structure.

Return Value
Drivers provide one of the following return values:

DRVCNF_CANCEL The installation operation should be canceled.
DRVCNF_OK The installation operation was successful.
DRVCNF_RESTART The installation operation was successful. The installation does

not take effect until Windows NT is restarted.

Comments
The DRV_INSTALL message is one of the standard driver messages. A client sends the message
by calling the driver's DriverProc entry point, passing the specified parameter values. Typically,
this message is sent by the Control Panel's Multimedia applet.

Drivers receive DRV_LOAD, DRV_ENABLE, and DRV_OPEN messages before receiving
DRV_INSTALL.

Installation operations include installing a kernel-mode driver, and creating Windows NT Registry
keys along with their default values. Windows NT only allows users with Administrator privilege to
install kernel-mode drivers, as discussed in Installing a Kernel-Mode Multimedia Driver.

Some drivers combine installation and configuration operations into one step and perform them
upon receipt of either a DRV_INSTALL or a DRV_CONFIGURE message.

If the driver returns DRVCNF_RESTART, you can assume that the caller will display a message
telling the administrator to restart Windows NT.

For more information about driver installation, see Installing Multimedia Drivers.

DRV_INSTALL
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 13 Windows NT DDK

DRV_LOAD
The DRV_LOAD message requests a user-mode multimedia driver to perform post-load
operations.

Parameters
dwDriverID

Specifies the driver instance identifier. This value is zero for the DRV_LOAD message.
hDriver

Driver handle.
uMsg

DRV_LOAD
lParam1

Not used. Set to zero.
lParam2

Not used. Set to zero.

Return Value
The driver should return a nonzero value if the operation succeeds. Otherwise it should return
zero, which causes winmm.dll to unload the driver.

Comments
The DRV_LOAD message is one of the standard driver messages. A client sends the message by
calling the driver's DriverProc entry point, passing the specified parameter values.

A user mode driver is not loaded until the first time a client attempts to open a driver instance.
Immediately after being loaded, a driver receives a DRV_LOAD message so it can handle
load-time activities. These activities might include initializing libraries or loading additional
resources.

After a user-mode driver instance has been opened, the driver remains loaded until all instances
have been closed.

See Also
DRV_FREE

DRV_OPEN
The DRV_OPEN message requests a user-mode multimedia driver to open a driver instance.

Parameters
dwDriverID

Specifies the driver instance identifier. This value is zero for the DRV_OPEN message.
hDriver

Driver handle.
uMsg

DRV_OPEN
lParam1

Address of a string containing any characters following the driver's file name in the Windows
NT Registry.

lParam2
Typically an interface-specific data structure. For example, MCI drivers received the address of
an MCI data structure.

Return Value
The driver should return a nonzero value if the operation succeeds. Otherwise it should return

DRV_OPEN
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 14 Windows NT DDK

zero. (See the following Comments section.)

Comments
The DRV_OPEN message is one of the standard driver messages. A client sends the message by
calling the driver's DriverProc entry point, passing the specified parameter values.

The nonzero return value is saved by winmm.dll and used as the dwDriverID input value for
subsequent calls to DriverProc. Because multiple driver instances can be opened
simultaneously, drivers typically use this value to identify driver instance data. For example, the
value could be an index into a driver-defined array, where each array element is a local,
dynamically allocated structure containing driver instance data. When the driver receives
subsequent calls to DriverProc for the open instance, it can use the dwDriverID value to
determine which set of instance data to use.

Drivers receive DRV_LOAD and DRV_ENABLE messages before receiving DRV_OPEN.

Audio device drivers receive customized driver messages for opening driver instances. These
drivers can ignore DRV_OPEN.

DRV_PNPINSTALL
The DRV_PNPINSTALL message requests a user-mode multimedia driver to allow a system
administrator to perform installation operations, using Plug and Play configuration information.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
DRV_PNPINSTALL

lParam1
Handle to a device information set. The handle type is HDEVINFO, which is defined in
setupapi.h.

lParam2
Pointer to an SP_DEVINFO_DATA structure.

Return Value
Drivers provide one of the following return values:

DRVCNF_CANCEL The installation operation should be canceled.
DRVCNF_OK The installation operation was successful.
DRVCNF_RESTART The installation operation was successful. The installation does

not take effect until Windows NT is restarted.

Comments
The DRV_PNPINSTALL message is one of the standard driver messages. A client sends the
message by calling the driver's DriverProc entry point, passing the specified parameter values.
Typically, this message is sent by the Media Class Installer, which is included in the Control
Panel's Multimedia applet.

If the system provides Plug and Play capabilities, the driver receives this message instead of
DRV_INSTALL. The driver uses the received lParam1 and lParam2 values as inputs to the
SetupDi-prefixed device installation functions provided by setupapi.dll. For descriptions of the
device installation functions, see the Programmer's Guide.

For more information about responding to the DRV_PNPINSTALL and DRV_CONFIGURE
messages on a Windows NT system providing Plug and Play capabilities, see the user-mode

DRV_PNPINSTALL
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 15 Windows NT DDK

driver source code for the Creative Labs Sound Blaster, which is one of the sample audio drivers.

DRV_QUERYCONFIGURE
The DRV_QUERYCONFIGURE message requests a user-mode multimedia driver to return a
value indicating whether it provides modifiable operating parameters.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
DRV_QUERYCONFIGURE

lParam1
Not used. Set to zero.

lParam2
Not used. Set to zero.

Return Value
If the driver supports modifiable parameters, it should return a nonzero value. Otherwise it should
return zero.

Comments
The DRV_QUERYCONFIGURE message is one of the standard driver messages. A client sends
the message by calling the driver's DriverProc entry point, passing the specified parameter
values. Typically, this message is sent by the Control Panel's Multimedia applet.

Drivers receive a DRV_OPEN message before receiving DRV_QUERYCONFIGURE.

If a driver provides modifiable parameters, it displays a dialog box when it receives a
DRV_CONFIGURE command.

DRV_REMOVE
The DRV_REMOVE message requests a user-mode multimedia driver to allow a system
administrator to perform removal operations.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
DRV_REMOVE

lParam1
Not used. Set to zero.

lParam2
Not used. Set to zero.

Return Value
Drivers provide one of the following return values:

DRVCNF_CANCEL The removal operation failed.
DRVCNF_OK The removal operation was successful.

DRV_REMOVE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 16 Windows NT DDK

DRVCNF_RESTART The removal operation was successful. The removal does not
take effect until Windows NT is restarted.

Comments
The DRV_REMOVE message is one of the standard driver messages. A client sends the
message by calling the driver's DriverProc entry point, passing the specified parameter values.
Typically, this message is sent by the Control Panel's Multimedia applet.

Removal is the opposite of installation. Removal operations might include removing a
kernel-mode driver and deleting Windows NT Registry keys that were created during installation.

Drivers receive a DRV_OPEN message before receiving DRV_REMOVE.

If the driver returns DRVCNF_RESTART, you can assume that the caller will display a message
telling the administrator to restart Windows NT.

See Also
DRV_INSTALL

Structures, Multimedia Drivers
This section describes the structures used by user-mode multimedia drivers.

DRVCONFIGINFO
typedef struct tagDRVCONFIGINFO {
 DWORD dwDCISize;
 LPCWSTR lpszDCISectionName;
 LPCWSTR lpszDCIAliasName;
} DRVCONFIGINFO;

The DRVCONFIGINFO structure, defined in mmsystem.h, is used as an input argument with the
DRV_INSTALL and DRV_CONFIGURE messages.

Members
dwDCISize

Specifies the size of the DRVCONFIGINFO structure.
lpszDCISectionName

Specifies a registry key name. This is always Drivers32.
lpszDCIAliasName

Specifies a driver alias.

Comments
For information about the \Drivers32 registry key name and driver aliases, see Using
oemsetup.inf Files with Multimedia Drivers.

The alias is used in the registry as a value name. The value assigned to this value name is the
user-mode driver's file name.

Functions, Multimedia Drivers
This section describes functions that are either called by or exported by all multimedia drivers.
The functions are listed in alphabetic order.

DefDriverProc
LRESULT WINAPI

 DefDriverProc (

DefDriverProc
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 17 Windows NT DDK

 DWORD dwDriverID,
 HDRVR hDriver,
 UINT uMsg,
 LPARAM lParam1,
 LPARAM lParam2
);

The DefDriverProc function is called by user-mode multimedia drivers to handle messages not
processed by the driver's DriverProc function. The function is defined in winmm.dll.

Parameters
dwDriverID

Value passed to the driver as the dwDriverID argument to DriverProc.
hDriver

Value passed to the driver as the hDriver argument to DriverProc.
uMsg

Value passed to the driver as the uMsg argument to DriverProc.
lParam1

Value passed to the driver as the lParam1 argument to DriverProc.
lParam2

Value passed to the driver as the lParam2 argument to DriverProc.

Return Value
The DefDriverProc function returns a value that is based on the received message. Return
values are shown in the following table.

Message Return Value
DRV_LOAD 1
DRV_FREE 1
DRV_ENABLE 1
DRV_DISABLE 1
DRV_INSTALL DRV_OK
DRV_REMOVE DRV_OK
All other messages. 0

Comments
A user-mode driver calls DefDriverProc by passing it the same arguments the driver received as
input to its DriverProc function.

Typically, a user-mode driver's DriverProc function assigns supported uMsg values to
C-language case statement arguments, and associates DefDriverProc with a default statement.
Refer to the sample drivers for examples. The value returned from DefDriverProc should be
used as the return value for DriverProc.

DriverCallback
BOOL APIENTRY

 DriverCallback(
 DWORD dwCallBack,
 DWORD dwFlags,
 HDRVR hDriver,
 DWORD dwMsg,
 DWORD dwInstance,
 DWORD dwParam1,
 DWORD dwParam2
);

DriverCallback
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 18 Windows NT DDK

The DriverCallback function is used by user-mode drivers to send a callback message to a client
application.

Parameters
dwCallBack

The target for the callback message. Can be one of:

• An event handle
• A callback function address
• A thread identifier
• A window handle
The application specifies the type of callback target when opening a driver instance. The
dwFlags parameter indicates the type of value stored in dwCallback.

dwFlags
One of the following flags, defined in mmddk.h, indicating the type of callback target:

DCB_EVENT Equivalent to HIWORD(CALLBACK_EVENT). Indicates
dwCallback contains an event handle. Code in winmm.dll calls
the Win32 SetEvent function.

DCB_FUNCTION Equivalent to HIWORD(CALLBACK_FUNCTION). Indicates
dwCallback contains a function address. Code in winmm.dll calls
the function.

DCB_TASK Equivalent to HIWORD(CALLBACK_THREAD). Indicates
dwCallback contains a thread identifer. Code in winmm.dll calls
the Win32 PostThreadMessage function to post a WM_USER
message.

DCB_WINDOW Equivalent to HIWORD(CALLBACK_WINDOW). Indicates
dwCallback contains a window handle. Code in winmm.dll calls
the Win32 PostMessage function.

The CALLBACK_EVENT, CALLBACK_FUNCTION, CALLBACK_THREAD, and
CALLBACK_WINDOW flags, referred to in the preceding table, are longword values used by
applications when calling Win32 API functions that open multimedia drivers, such as
midiOutOpen, waveOutOpen, or videoStreamInit.

hDriver
The driver handle that the driver received with the DRV_OPEN message.

dwMsg
A message to send to the application. Ignored if dwFlags is DCB_EVENT or DCB_TASK. The
messages that can be sent are unique for each type of multimedia device and are listed in the
chapters for each device type.

dwInstance
An application-supplied value to be passed to a callback function. Ignored if dwFlags is
DCB_EVENT, DCB_TASK, or DCB_WINDOW. Applications specify this value when calling
Win32 API functions that open multimedia drivers, such as midiOutOpen, waveOutOpen, or
videoStreamInit.

dwParam1
A message-dependent parameter. Ignored if dwFlags is DCB_EVENT or DCB_TASK.

dwParam2
A message-dependent parameter. Ignored if dwFlags is DCB_EVENT, DCB_TASK, or
DCB_WINDOW.

Return Value
Returns FALSE if dwCallback is NULL, if dwFlags is invalid, or if the message cannot be queued.
Otherwise returns TRUE.

Comments

DriverCallback
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 19 Windows NT DDK

User-mode drivers call the DriverCallback function to deliver callback messages to applications
that have requested them. Applications request delivery of callback messages by specifying a
callback target when they open a driver instance. Win32 API functions that allow applications to
specify a callback target include midiOutOpen, waveOutOpen, videoStreamInit, and others.

DriverEntry for Multimedia Drivers
NTSTATUS

DriverEntry(
 PDRIVER_OBJECT pDriverObject,
 PUNICODE_STRING RegistryPathName
);

The DriverEntry function is a kernel-mode driver's entry point. For kernel-mode multimedia
drivers, the DriverEntry function's two parameters are defined as shown. (Other types of
kernel-mode drivers might define the function's parameters differently.)

Parameters
pDriverObject

Pointer to a DRIVER_OBJECT structure.
RegistryPathName

Pointer to the registry path that leads to the kernel-mode driver's subkey. See the following
Comments section.

Return Value
Returns STATUS_SUCCESS if initialization operations succeed. Otherwise the function returns
one of the error codes defined in ntstatus.h that fail the NT_SUCCESS macro.

Comments
Windows NT calls a kernel-mode driver's DriverEntry function immediately after it has loaded the
driver.

The registry path pointed to by RegistryPathName is
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\drivername, where
drivername is the name that the user-mode driver specified when it installed the kernel-mode
driver. Drivers use this path for storing hardware configuration parameters.

For more information about DriverEntry, see DriverEntry in Kernel-Mode Multimedia Drivers.

DriverProc
LRESULT

 DriverProc (
 DWORD dwDriverID,
 HDRVR hDriver,
 UINT uMsg,
 LPARAM lParam1,
 LPARAM lParam2
);

The DriverProc function is a user-mode driver's entry point.

Parameters
dwDriverID

Instance identifier. This value is message-dependent.
hDriver

Driver handle.
uMsg

One of the standard driver messages or one of the customized driver messages.

DriverProc
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 20 Windows NT DDK

lParam1
Message-dependent parameter.

lParam2
Message-dependent parameter.

Return Value
DriverProc returns a value that is dependent upon the message.

Comments
All user-mode multimedia drivers must define a DriverProc function. The DriverProc function
name must be exported in a module definition (.def) file.

The meanings of the dwDriverID, lParam1, and lParam2 parameters are dependent upon the
message that the driver receives as the uMsg parameter value. Refer to the description of each
message to determine the meanings of these parameters.

For more information about DriverProc, see User-Mode Driver Entry Points.

MCI Drivers
The following topics explain how to write a Windows NT multimedia driver that supports the
Media Control Interface (MCI):

• Introduction to MCI
• Introduction to MCI Drivers
• Designing an MCI Driver
• Creating Customized MCI Commands
• MCI Reference

For a general discussion of multimedia drivers, see Introduction to Multimedia Drivers.

Introduction to MCI
The Media Control Interface (MCI) provides a convenient, common API that client applications
can use for controlling all multimedia hardware. MCI is made up of the following components:

• An API available to applications, consisting of callable functions plus a window class and
associated messages.

• MCI command parsing and dispatching routines.
• A set of MCI drivers.

Under Windows NT, the command parsing and dispatching functions reside within winmm.dll.
Client applications access these functions by calling mci-prefixed API functions provided by
winmm.dll. Applications can also use the MCIWnd window class and its associated messages,
which provide a simpler, higher-level interface than the mci-prefixed functions. (The MCI
functions and window messages are described in the Win32 SDK.)

Usually when an application calls an MCI function, winmm.dll calls an MCI driver to perform the
specified operation. Applications primarily call the mciSendCommand and mciSendString
functions. Even when an application uses the MCIWnd window class, it is actually making indirect
calls to these two functions. The mciSendCommand and mciSendString functions are
described in the Win32 SDK.

Introduction to MCI
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 21 Windows NT DDK

When an application calls mciSendCommand, it specifies a device and an MCI command
message, which is simply a predefined constant value, such as MCI_PLAY. The
mciSendCommand function calls the MCI driver for the specified device and passes the
command message. The driver processes the command and returns.

When an application calls mciSendString, it specifies an MCI command string, which is a text
string describing the command and device, such as "play videodisc1". In this case, an MCI
command parser searches a set of MCI command tables to verify that the command is valid for
the specified device. If the command is valid, the parser converts the command string to a
command message, and the message is passed to the appropriate MCI driver. The driver
processes the command and returns.

A unique data structure is defined for each MCI command. These MCI data structures have a
standardized format and are used for passing information to and from MCI drivers. Applications
calling mciSendCommand reference the structures directly. Applications calling mciSendString
do not reference the structures. Instead, winmm.dll converts input strings into structure member
values. Before the call returns, winmm.dll extracts output values from the structure and converts
them to output strings.

Introduction to MCI Drivers
MCI drivers are installable, user-mode device drivers that process MCI commands. Like all other
user-mode drivers under Windows NT, MCI drivers are DLLs. For more information about
user-mode drivers under Windows NT, see Introduction to Multimedia Drivers.

MCI drivers can initiate hardware operations by either of two methods:

1. They can call kernel-mode drivers using Win32 API functions such as CreateFile, ReadFile,
and WriteFile, as described in Introduction to Multimedia Drivers.

2. They can call other user-mode drivers, using Win32 multimedia functions described in the
Win32 SDK. For example, a driver implementing an MCI interface for MIDI sequencers can
call the Win32 MIDI functions, causing a user-mode audio driver to be accessed.

Like all other types of installable drivers, MCI drivers must define a DriverProc function. This
function must handle the standard driver messages. Additionally, it must handle MCI messages.
For more information, see DriverProc in MCI Drivers.

The following topics provide more introductory information about MCI drivers:

• MCI Command Tables
• MCI Command Types
• MCI Device Types
• Simple and Compound Devices
• Sample MCI Driver

MCI Command Tables
Client applications can specify MCI commands as either strings or messages, but an MCI driver's
DriverProc function only accepts messages. Therefore, it is necessary to provide command
tables, which the MCI command parser uses to translate command strings into messages.
Furthermore, most commands can accept modifiers, so the MCI parser translates string modifiers
into message arguments that MCI drivers can read.

There are three types of command tables:

• Core command table
There is one core command table. It contains the commands that all MCI drivers must support.
These include the required and basic MCI command types. The core command table is
included in winmm.dll.

MCI Command Tables
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 22 Windows NT DDK

• Device-type command tables
There are command tables for several MCI device types. Each of these tables contains
commands that are common to a particular multimedia device type, such as "videodisc" or
"waveaudio". Several device-type tables are included in winmm.dll. Others can be included as
separate files, with a filename extension of .mci.

• Device-specific command tables
There can be any number of device-specific command tables. If a particular device requires its
own set of commands, a unique command table must be provided. These tables can exist as
separate files, with a filename extension of .mci. They can also be defined within a particular
driver's resource file and linked to the driver.

Command tables are compiled by the Microsoft Windows Resource Compiler, which is described
in the Win32 SDK.

Device-type command tables take precedence over the core command table. Likewise,
device-specific command tables take precedence over device-type command tables. And finally,
device-specific tables that reside in separate files take precedence over those that are linked to
drivers. This scheme allows the core commands and device-type commands to be modified. In
fact, it is common for a device-type or a device-specific table to redefine a core command in
order to provide an expanded set of command modifiers.

For details about the contents of command tables and their associated data structures, see
Creating Customized MCI Commands.

MCI Command Types
There are four types of MCI commands:

1. System commands
2. Required commands
3. Basic commands
4. Extended commands

System commands are not passed to an MCI driver. They are processed within winmm.dll.

Required commands are defined in the core command table. MCI drivers must recognize and
process all required commands.

Basic commands are also defined in the core command table. MCI drivers must recognize all
basic commands. However, if a basic command is not relevant to a particular device, the driver
can simply return MCI_UNSUPPORTED_FUNCTION for that command.

Extended commands are those that are included in the device-type or device-specific command
tables. Extended commands can either be modifications of the basic and required commands, or
they can be new commands. An MCI driver only needs to recognize extended commands that are
relevant for its device.

The following table lists the system, required, and basic commands. Extended commands are
described within the Win32 SDK.

Command Type Command String Command Message
System Commands break MCI_BREAK

sound MCI_SOUND
sysinfo MCI_SYSINFO

Required Commands capability MCI_GETDEVCAPS
close MCI_CLOSE (Driver receives

MCI_CLOSE_DRIVER.)
info MCI_INFO
open MCI_OPEN (Driver receives

MCI Command Types
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 23 Windows NT DDK

MCI_OPEN_DRIVER.)
status MCI_STATUS

Basic Commands load MCI_LOAD
pause MCI_PAUSE
play MCI_PLAY
record MCI_RECORD
resume MCI_RESUME
save MCI_SAVE
seek MCI_SEEK
set MCI_SET
stop MCI_STOP

All MCI commands are described in the Win32 SDK. To find the definition of a command, use the
Win32 SDK keyword index to search for the command message (for example, MCI_SYSINFO).

MCI Device Types
Devices with similar properties are grouped together in categories known as device types. All of
the devices belonging to a particular type respond to a common set of MCI commands. Each set
of commands is contained in a separate MCI command table.

The following table lists device types defined by Microsoft. The table includes both string names
and constants. Constants are defined in mmsystem.h.

String Constant
animation MCI_DEVTYPE_ANIMATION
cdaudio MCI_DEVTYPE_CD_AUDIO
dat MCI_DEVTYPE_DAT
digitalvideo MCI_DEVTYPE_DIGITAL_VIDEO
overlay MCI_DEVTYPE_OVERLAY
scanner MCI_DEVTYPE_SCANNER
sequencer MCI_DEVTYPE_SEQUENCER
vcr MCI_DEVTYPE_VCR
videodisc MCI_DEVTYPE_VIDEODISC
waveaudio MCI_DEVTYPE_WAVEFORM_AUDIO

An MCI driver assigns a device to its appropriate type when it receives a DRV_OPEN message.
(See Opening an MCI Driver.) This tells winmm.dll which command table to use. The driver uses
the MCI_DEVTYPE_OTHER type for devices not belonging to any of the predefined types.

To find which MCI commands a driver must support for a particular device type, see the Win32
SDK. The Win32 SDK lists the command set associated with each device type. (Use the keyword
index to search for a device type string, such as "videodisc".)

Simple and Compound Devices
For the purposes of MCI, devices are classified as either:

Simple devices
Simple devices do not require a data file for playback. Videodisc players and compact disc
(CD) audio players are examples of simple devices.

Compound devices
Compound Devices require a data file for playback. MIDI sequencers and waveform audio
players are examples of compound devices. The data file associated with a compound device
is known as a device element. Examples of device elements are MIDI files and waveform files.

Simple and Compound Devices
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 24 Windows NT DDK

Sample MCI Driver
Source code for a sample MCI driver is included with this DDK. The MCIPIONR driver is the MCI
device driver for the Pioneer 4200 videodisc player. Its source files can be found in
\ddk\src\mmedia\mcipionr.

Designing an MCI Driver
This topic provides the following subtopics, which cover information you need to design an MCI
driver:

• DriverProc in MCI Drivers
• Handling Standard Driver Messages
• Handling the MCI_NOTIFY Flag
• Handling the MCI_WAIT Flag
• Handling the MCI_TEST Flag
• Opening an MCI Driver
• Sharing A Device
• Storing Instance-Specific Information
• Providing Device Information
• Closing an MCI Driver

• Guidelines for Handling MCI Commands

If you are defining customized command tables, also see Creating Customized MCI Commands.

DriverProc in MCI Drivers
Like all other types of installable drivers, MCI drivers must define a DriverProc entry point. This
function must handle the standard driver messages. Additionally, it must handle MCI messages.
Within winmm.dll, application calls to mciSendCommand and mciSendString become calls to
DrvSendMessage, which is described in the Win32 SDK and is the standard method for calling a
driver's DriverProc function.

Like the standard messages, MCI messages are defined as constant values that can be used in a
C-language case statement. These constants are defined in mmsystem.h.

This section also provides information on DriverProc parameters and DriverProc return values
for MCI drivers.

DriverProc Parameters
The DriverProc function is defined as follows:

LRESULT WINAPI DriverProc (
DWORD dwDriverID,
HDRVR hDriver,
UINT uMsg,
LPARAM lParam1,
LPARAM lParam2
);

When winmm.dll passes MCI messages to DriverProc, the function parameters are used as
follows:

dwDriverID
Contains the driver identifier created by MCI.

DriverProc Parameters
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 25 Windows NT DDK

hDriver
Contains a handle to the device driver.

uMsg
Contains an MCI message constant value.

lParam1
Contains message-specific MCI flags.

lParam2
Points to a message-specific MCI data structure.

The lParam1 and lParam2 parameters generally are used to represent MCI command arguments.
Some arguments can simply be represented as flags in lParam1. Other arguments are passed as
members of a data structure pointed to by lParam2. In this latter case, lParam1 flags are used to
indicate the presence of valid members within the structure pointed to by lParam2. This structure
is also used for returning information to the application.

There is a unique lParam2 data structure for each MCI message. Additionally, driver developers
can define customized structures for extended commands. All of the data structures provided by
Microsoft are defined in mmsystem.h and described in the Win32 SDK. Refer to Creating New
MCI Command Structures to learn how to create custom structures.

DriverProc Return Values
When DriverProc receives an MCI message, its double-word return value must be assigned as
follows:

• If no errors occur, return zero.
• If an error occurs, return one of the MCI error return values in the low word. (If the error is

device-specific, winmm.dll places the device ID in the high word.)

The MCI error return values are defined in mmsystem.h, and are prefixed with "MCIERR_". For a
definition of each MCI error return value, see the Win32 SDK. Note that an additional set of error
return values is defined for mciSendString. These additional values are returned by winmm.dll,
not by MCI drivers.

When DriverProc receives one of the standard driver messages, its return value must be zero if
an error occurs. Note that this is opposite to the situation for MCI messages.

Handling Standard Driver Messages
Handling standard driver messages is described in Introduction to Multimedia Drivers. Also see
this chapter's sections entitled Opening an MCI Driver and Closing an MCI Driver, which discuss
some of the standard messages.

Handling the MCI_NOTIFY Flag
All MCI command tables must include the MCI_NOTIFY flag for all commands. Applications use
this flag to request notification when an operation has completed.

Normally when an MCI driver receives a command, it should initiate the associated operation and
then return control to the calling application. For example, if an application sends an MCI_SEEK
command, the driver should start the seek operation and immediately return. The application is
not notified when the operation completes.

As an option, an application sending any MCI command can request to be notified when the
command operation has completed. To do this, the application specifies the following arguments
along with the command:

• The MCI_NOTIFY flag. The driver receives this flag in the lParam1 argument to DriverProc.
• A window handle. The driver receives this handle as the dwCallback member of any structure

whose address is passed as the lParam2 argument to DriverProc.

Handling the MCI_NOTIFY Flag
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 26 Windows NT DDK

When a driver receives an MCI command that includes the MCI_NOTIFY flag, the driver must
start the specified operation and then return. When the operation completes, the driver must call
mciDriverNotify in winmm.dll. The mciDriverNotify function enqueues an MM_MCINOTIFY
message to the window specified in dwCallback. The application's window procedure must check
for and process the MM_MCINOTIFY message.

Handling the MCI_WAIT Flag
All MCI command tables must include the MCI_WAIT flag for all commands. Applications use this
flag to request the driver to complete the operation before returning control to the application.

When an MCI driver receives a command, by default it should start the operation and then return
control to the calling application. The driver should not wait for the operation to complete before
returning. For example, if an application sends an MCI_SEEK command, the driver should start
the seek operation and immediately return.

Optionally, an application sending any MCI command can request the driver to wait until the
associated operation is complete before returning. The application makes this request by
including the MCI_WAIT flag as a command argument.

The driver receives the MCI_WAIT flag in the lParam1 argument to DriverProc. If the flag is
present, then the driver must initiate the requested operation and then wait for it to complete
before returning.

Yielding
Since the waiting time can be potentially long, a user must be allowed to interrupt the operation.
By default, MCI provides a yield routine that checks for a break key. The default break key is
CTRL+BREAK. An application can change the break key by sending the MCI_BREAK command. It
can also replace the default yield routine with a customized one by calling the mciSetYieldProc
function in winmm.dll. The yield routine returns a nonzero value if the driver should terminate the
current operation.

While the driver is waiting for the requested operation to complete, it must periodically call the
mciDriverYield function in winmm.dll. This function calls the currently selected yield routine and
returns its return value. If this value is nonzero, the driver must stop the operation.

Handling the MCI_TEST Flag
The MCI command tables for some device types, including MCI_DEVTYPE_VCR and
MCI_DEVTYPE_DIGITAL_VIDEO types, provide support for the MCI_TEST flag. The driver
receives the MCI_TEST flag in the lParam1 argument to DriverProc.

If an application includes this flag with a command, the driver does not initiate the specified
operation. Instead, it determines if the operation is currently available. If the operation is
available, the driver returns zero. Otherwise it returns MCIERR_NONAPPLICABLE_FUNCTION.
For example, a VCR driver might not allow an MCI_INDEX command while a seek operation is in
progress. (Of course, in such a case the driver should return
MCIERR_NONAPPLICABLE_FUNCTION even if the MCI_TEST flag is not specified.)

Opening an MCI Driver
A client application using MCI opens a driver by sending an MCI_OPEN message. This message
is intercepted by winmm.dll, which first loads the appropriate MCI driver into the application's
address space, and then sends it the following messages, in the order listed:

1. DRV_LOAD
2. DRV_ENABLE
3. DRV_OPEN
4. MCI_OPEN_DRIVER

Opening an MCI Driver
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 27 Windows NT DDK

Note that the driver does not receive the MCI_OPEN message. Also be aware that DRV_LOAD
and DRV_ENABLE are sent only if the driver was not previously loaded.

For more information, see the following topics:

• Handling DRV_LOAD
• Handling DRV_ENABLE
• Handling DRV_OPEN
• Handling MCI_OPEN_DRIVER

Handling DRV_LOAD
If your driver provides a customized command table, load it by calling
mciLoadCommandResource when DriverProc receives the DRV_LOAD message. For more
information on handling DRV_LOAD, see Introduction to Multimedia Drivers.

Handling DRV_ENABLE
For information on handling DRV_ENABLE, see Introduction to Multimedia Drivers.

Handling DRV_OPEN
When winmm.dll sends the DRV_OPEN message, it sets the DriverProc parameters as follows:

dwDriverID
Zero.

hDriver
The driver's handle.

uMsg
DRV_OPEN.

lParam1
Contains a pointer to a zero-terminated string. The string contains any characters that follow
the filename in the system registry.

lParam2
Pointer to an MCI_OPEN_DRIVER_PARMS structure.

The value of the lpstrParams member of MCI_OPEN_DRIVER_PARMS is the same as the
value of lParam1.

Before DriverProc returns, you must:

• Set the wCustomCommandTable member of MCI_OPEN_DRIVER_PARMS. If the driver is
using a custom command table, this member must contain the handle returned by
mciLoadCommandResource. Otherwise use MCI_NO_COMMAND_TABLE, defined in
mmddk.h.

• Set the wType member of MCI_OPEN_DRIVER_PARMS to one of the defined MCI device
types. If the device does not belong to any of the defined types, use MCI_DEVTYPE_OTHER.

• Assign the DriverProc function's return value to be the contents of the wDeviceID member of
MCI_OPEN_DRIVER_PARMS. However, if you encounter errors during the process of opening
the device, you should assign a return value of zero instead.

The driver can also perform instance-specific operations for the device being opened.

Handling MCI_OPEN_DRIVER
The first MCI message a driver receives is MCI_OPEN_DRIVER. For this message, DriverProc
parameters are set as follows:

dwDriverID

Handling MCI_OPEN_DRIVER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 28 Windows NT DDK

The driver ID value specified as the DriverProc return value for the DRV_OPEN message.
hDriver

The driver's handle.
uMsg

MCI_OPEN_DRIVER.
lParam1

Flags. (See MCI_OPEN in Win32 SDK.)
lParam2

Pointer to an MCI_OPEN_PARMS structure.

An application specifies the contents of lParam1 and lParam2 when it sends an MCI_OPEN
command.

For a compound device, the driver should test the MCI_OPEN_ELEMENT flag. If set, it indicates
that a pointer to an element pathname is available in the lpstrElementName member of
MCI_OPEN_PARMS.

Drivers for compound devices sometimes receive MCI_OPEN_DRIVER messages with the
MCI_OPEN_ELEMENT flag cleared. This situation can occur if the application opens the device
only for the purpose of querying the device with an MCI_GETDEVCAPS or MCI_INFO command.
Therefore, drivers for compound devices must allow the MCI_OPEN_DRIVER command to
succeed if it is received without an element name, but they must provide a failure return for any
command that requires an element, if the element name is missing.

The MCI_OPEN_ELEMENT_ID flag indicates that the lpstrElementName member of
MCI_OPEN_PARMS contains a DWORD value instead of a string pointer. This allows you to
define an element specifier as being something other than a file pathname. Use of this flag is not
recommended.

Drivers can ignore the MCI_OPEN_TYPE, MCI_OPEN_TYPE_ID, and MCI_OPEN_ALIAS flags.
These are handled within winmm.dll.

Drivers that support sharing a device must test the MCI_OPEN_SHAREABLE flag.

The driver can also perform instance-specific operations for the device or element being opened,
such as storing instance-specific information.

When handling the MCI_NOTIFY flag with the MCI_OPEN_DRIVER command, a driver should
return to the application only after it verifies that the open operation will probably succeed. For
example, suppose that opening a device element requires reading a large file from a CD-ROM.
Before returning to the application, the driver should confirm that the file is accessible and that
enough memory can be allocated to load it. This avoids providing a successful (zero) return value
to DriverProc, only to later have to deliver an MM_MCINOTIFY message with a status of
MCI_NOTIFY_FAILURE.

Sharing A Device
To share a simple device, a driver creates a single context that can be shared by multiple
applications. This context allows each application to reference and modify device characteristics
set up by other applications. For example, a shared driver for a CD player should allow an
application to issue a command ("resume", for example) that is based on the context of the last
command received from any other application ("stop", for example).

Because each instance of a shared driver is created by a separate DRV_OPEN command, a
separate driver ID is assigned to each instance.

For a compound device, the shareable object is the device element. Each element has a unique
device ID. The driver allows multiple applications to share an element's context. Each application
can reference and modify characteristics of the element that have been set up by other
applications.

If a driver can share a device (or object), the decision about whether it should share the device (or

Sharing A Device
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 29 Windows NT DDK

object) is based on the first MCI_OPEN_DRIVER command. If this command includes the
MCI_OPEN_SHAREABLE flag, then the driver should mark the device (or object) as being
shared. Each subsequent MCI_OPEN_DRIVER command received must also include the
MCI_OPEN_SHAREABLE flag, or else the MCIERR_MUST_USE_SHAREABLE error value must
be returned.

On the other hand, if the first MCI_OPEN_DRIVER command does not include the
MCI_OPEN_SHAREABLE flag, then no subsequent MCI_OPEN_DRIVER command can include
the MCI_OPEN_SHAREABLE flag either. If it does, the MCIERR_MUST_USE_SHAREABLE
error value must be returned.

If an application specifies the MCI_OPEN_SHAREABLE flag but the driver does not allow device
sharing, then the driver must return MCIERR_UNSUPPORTED_FUNCTION.

For compound devices, drivers can alternatively allow several applications to open a single
element without specifying the MCI_OPEN_SHAREABLE flag. In this case, each application
should possess its own context for the element. As a result, each application makes its own
modifications to the element context without affecting any other application's context. Each
application can move independently within a single element. Also, a single application can open a
single element multiple times, providing multiple contexts for one element.

Storing Instance-Specific Information
It is sometimes necessary for a driver to save instance-specific information. Two functions
supplied by winmm.dll, mciSetDriverData and mciGetDriverData, are useful for associating
instance-specific information with driver ID's. You can use these functions to store and retrieve a
longword for each assigned driver ID (that is, for each opened device or element). Drivers
typically cast the longword to a pointer to a locally allocated structure.

Providing Device Information
This section discusses the MCI commands that request information. It also explains the process
of returning information to applications. Finally, it provides guidelines for returning information.

MCI Commands that Request Information
Four MCI commands allow applications to obtain information about a device. Three of these
commands are sent to MCI drivers. They are:

1. MCI_GETDEVCAPS
2. MCI_INFO
3. MCI_STATUS

A fourth command, MCI_SYSINFO, is handled within winmm.dll. This command is not sent to
MCI drivers.

The MCI_GETDEVCAPS, MCI_INFO, and MCI_STATUS commands are similar to each other in
the following ways:

• The driver receives a flag in the lParam1 parameter of DriverProc, indicating the type of
information being requested.

• The driver receives the address of a data structure in the lParam2 parameter of DriverProc.
This structure contains either a location or a pointer that the driver uses for returning the
requested information.

An application can only request, and the driver can only return, one type of information per call.
The MCI_GETDEVCAPS and MCI_STATUS commands return information as integer values. The
MCI_INFO command returns information as strings (such as pathnames).

The types of information provided vary with the device type. See the descriptions of
MCI_GETDEVCAPS, MCI_INFO, and MCI_STATUS in the Win32 SDK for information on the

MCI Commands that Request Information
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 30 Windows NT DDK

flags that have been defined with each command, for each device type. Drivers that define
extended command sets can define new flags appropriate to their devices. Drivers can also
define additional commands for returning other types of information. For example, drivers for
video device types support an MCI_WHERE command, which returns a RECT data type for
describing a rectangle.

Returning Information to Applications
There are two standardized methods for returning information to applications. One method is used
for returning integer values and the other is used for returning strings.

When a driver receives an MCI command that requests information, it also receives the address
of a data structure in the lParam2 parameter to DriverProc. A different structure is defined for
each MCI command. Customized structures are defined for some device types. The structure's
definition dictates which method is used for returning the requested information.

Following is the structure definition for MCI_STATUS_PARMS, which is used with the
MCI_STATUS command to return an integer value:

typedef struct tagMCI_STATUS_PARMS {
 DWORD dwCallback;
 DWORD dwReturn;
 DWORD dwItem;
 DWORD dwTrack;
} MCI_STATUS_PARMS, *PMCI_STATUS_PARMS, FAR * LPMCI_STATUS_PARMS;

The MCI_STATUS_PARMS structure defines a DWORD-sized member called dwReturn. To
return an integer value for MCI_STATUS, the driver places a longword value into dwReturn.

Following is the structure definition for MCI_INFO_PARMS, used with the MCI_INFO command to
return a string:

typedef struct tagMCI_INFO_PARMS {
 DWORD dwCallback;
 LPSTR lpstrReturn;
 DWORD dwRetSize;
} MCI_INFO_PARMS, FAR * LPMCI_INFO_PARMS;

The MCI_INFO_PARMS structure defines two members, lpstrReturn and dwRetSize. These
members are used for returning a string value. In this case, the application places a string buffer
pointer in lpstrReturn and a buffer size in dwRetSize. The driver copies the return string into the
buffer.

Returning String Resource Indentifiers
It is important to remember that applications can communicate with MCI by using either strings or
command constants. When an application calls mciSendString, it specifies commands in string
form and expects information to be returned in string form. When an application calls
mciSendCommand it specifies command constants and flag constants, and expects information
to be returned in a command-specific data structure, which it references. MCI drivers sometimes
need to return information in both formats, in order to support both interfaces.

Suppose an application uses the MCI_STATUS command to request the device's current mode,
and it happens that the device is currently stopped. An application using mciSendCommand
should be able to test the MCI_MODE_STOP flag value stored in the dwReturn member of an
MCI_STATUS_PARMS structure. An application using mciSendString should receive the string
"stopped" in its string buffer. The driver is responsible for returning both the flag and a string
resource identifier. (String resources are discussed in the Win32 SDK.)

The proper way to return both a flag and a string resource identifier is to combine them in the
dwReturn member, using the MAKEMCIRESOURCE macro. This macro concatenates two
integers to make a single long integer. The resource identifier must be placed in the high word of
the long integer.

Returning Information to Applications
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 31 Windows NT DDK

If a driver returns a resource identifier, it must set the DriverProc return value to
MCI_RESOURCE_RETURNED, as shown in the following example. (Notice that, in this case, the
flag constant value and the string resource ID value are the same.)

wResource = MCI_MODE_STOP;
lpStatus->dwReturn = (DWORD)MAKEMCIRESOURCE(wResource, wResource);
dReturn = MCI_RESOURCE_RETURNED;

If the string resource is defined in a driver-specific resource file, the driver must also set
MCI_RESOURCE_DRIVER in the return value, as shown in the following example of returning
the "audio" status from an AVI driver. (Notice that, in this case, the flag constant value and the
string resource ID value are not the same.)

lpStatus->dwReturn = (npMCI->dwFlags & MCIAVI_PLAYAUDIO) ?
 (MAKEMCIRESOURCE(MCI_ON, MCI_ON_S)) :
 (MAKEMCIRESOURCE(MCI_OFF, MCI_OFF_S));
return MCI_RESOURCE_RETURNED | MCI_RESOURCE_DRIVER;

Both MCI_RESOURCE_RETURNED and MCI_RESOURCE_DRIVER set bits in the return
value's high word.

If the application used mciSendString to send the command, then winmm.dll checks the high
word of the DriverProc return value. If MCI_RESOURCE_RETURNED is set, winmm.dll loads
the string associated with the resource identifier and places it in the application's return buffer.

If the application used mciSendCommand to send the command and
MCI_RESOURCE_RETURNED is set in the high word of the DriverProc return value, then
winmm.dll just clears the high word before passing the return value to the application.

The following table contains the resource strings provided by winmm.dll for use by drivers. The
resource identifiers and constants are defined within mmsystem.h and mmddk.h. (Sometimes the
constant and resource ID are the same.) The strings are defined in a resource file that is part of
winmm.dll. Driver developers can define additional strings within a driver-specific resource file.
The driver calls mciLoadCommandResource to register the resource file with winmm.dll.

Constant Resource ID String
MCI_FALSE MCI_FALSE false
MCI_TRUE MCI_TRUE true
MCI_DEVTYPE_ANIMATION MCI_DEVTYPE_ANIMATION animation
MCI_DEVTYPE_CD_AUDIO MCI_DEVTYPE_CD_AUDIO cdaudio
MCI_DEVTYPE_DAT MCI_DEVTYPE_DAT dat
MCI_DEVTYPE_DIGITAL_VIDEO MCI_DEVTYPE_DIGITAL_VIDEO digitalvideo
MCI_DEVTYPE_OTHER MCI_DEVTYPE_OTHER other
MCI_DEVTYPE_OVERLAY MCI_DEVTYPE_OVERLAY overlay
MCI_DEVTYPE_SCANNER MCI_DEVTYPE_SCANNER scanner
MCI_DEVTYPE_SEQUENCER MCI_DEVTYPE_SEQUENCER sequencer
MCI_DEVTYPE_VCR MCI_DEVTYPE_VCR vcr
MCI_DEVTYPE_VIDEODISC MCI_DEVTYPE_VIDEODISC videodisc
MCI_DEVTYPE_WAVEFORM_AUDIO MCI_DEVTYPE_WAVEFORM_AUDIO waveaudio
MCI_FORMAT_BYTES MCI_FORMAT_BYTES_S bytes
MCI_FORMAT_FRAMES MCI_FORMAT_FRAMES_S frames
MCI_FORMAT_HMS MCI_FORMAT_HMS_S hms
MCI_FORMAT_MILLISECONDS MCI_FORMAT_MILLISECONDS_S milliseconds
MCI_FORMAT_MSF MCI_FORMAT_MSF_S msf
MCI_FORMAT_SAMPLES MCI_FORMAT_SAMPLES_S samples
MCI_FORMAT_SMPTE_24 MCI_FORMAT_SMPTE_24_S smpte 24

Returning Information to Applications
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 32 Windows NT DDK

MCI_FORMAT_SMPTE_25 MCI_FORMAT_SMPTE_25_S smpte 25
MCI_FORMAT_SMPTE_30 MCI_FORMAT_SMPTE_30_S smpte 30
MCI_FORMAT_SMPTE_30DROP MCI_FORMAT_SMPTE_30DROP_S smpte 30

drop
MCI_FORMAT_TMSF MCI_FORMAT_TMSF_S tmsf
MCI_MODE_NOT_READY MCI_MODE_NOT_READY not ready
MCI_MODE_OPEN MCI_MODE_OPEN open
MCI_MODE_PAUSE MCI_MODE_PAUSE paused
MCI_MODE_PLAY MCI_MODE_PLAY playing
MCI_MODE_RECORD MCI_MODE_RECORD recording
MCI_MODE_SEEK MCI_MODE_SEEK seeking
MCI_MODE_STOP MCI_MODE_STOP stopped
MCI_SEQ_DIV_PPQN MCI_SEQ_DIV_PPQN PPQN
MCI_SEQ_DIV_SMPTE_24 MCI_SEQ_DIV_SMPTE_24 SMPTE 24

Frame
MCI_SEQ_DIV_SMPTE_25 MCI_SEQ_DIV_SMPTE_25 SMPTE 25

Frame
MCI_SEQ_DIV_SMPTE_30 MCI_SEQ_DIV_SMPTE_30 SMPTE 30

Frame
MCI_SEQ_DIV_SMPTE_30DROP MCI_SEQ_DIV_SMPTE_30DROP SMPTE 30

Drop Frame
MCI_SEQ_FILE MCI_SEQ_FILE_S file
MCI_SEQ_FORMAT_SONGPTR MCI_SEQ_FORMAT_SONGPTR_S song

pointer
MCI_SEQ_MIDI MCI_SEQ_MIDI_S midi
MCI_SEQ_NONE MCI_SEQ_NONE_S none
MCI_SEQ_SMPTE MCI_SEQ_SMPTE_S smpte
MCI_VD_FORMAT_TRACK MCI_VD_FORMAT_TRACK_S track
MCI_VD_MEDIA_CAV MCI_VD_MEDIA_CAV CAV
MCI_VD_MEDIA_CLV MCI_VD_MEDIA_CLV CLV
MCI_VD_MEDIA_OTHER MCI_VD_MEDIA_OTHER other
MCI_VD_MODE_PARK MCI_VD_MODE_PARK parked
MIDIMAPPER MIDIMAPPER_S mapper
WAVE_FORMAT_PCM WAVE_FORMAT_PCM_S pcm
WAVE_MAPPER WAVE_MAPPER_S mapper

Returning Integers
If an application requests information that is represented as an integer value, the driver just
places the integer in the dwReturn member of the command's data structure. If the application
used mciSendString to request the information, then winmm.dll converts the integer to a string
and places the string in the application's return buffer.

The driver can request winmm.dll to insert colons into the integer string. A typical reason for
inserting colons is returning time values. To request colon insertion, a driver assigns
MCI_COLONIZED3_RETURN or MCI_COLONIZED4_RETURN to the DriverProc return value,
as shown in the next example. These constants set bits in the return value's high word.

DWORD dwSeconds = dwFrames / CAV_FRAMES_PER_SECOND;
lpStatus->dwReturn = MCI_MAKE_HMS(dwSeconds / 3600,
 (dwSeconds % 3600) / 60,
 dwSeconds % 60);
return MCI_COLONIZED3_RETURN;

Returning Information to Applications
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 33 Windows NT DDK

If the application used mciSendString to request the information, then winmm.dll treats each
byte of the return value as a separate integer and inserts a colon between each integer in the
string that is returned to the application. For an integer value of 0x01020304, specifying
MCI_COLONIZED4_RETURN returns the string "4:3:2:1", and specifying
MCI_COLONIZED3_RETURN returns "4:3:2".

One other special DriverProc return value, MCI_INTEGER_RETURNED, forces a command's
returned information to be an integer even though the command's data structure defines the
return type as a string. Microsoft uses this flag within winmm.dll, for support of the MCI_SYSINFO
command. This command's MCI_SYSINFO_PARMS structure defines a string return, but if the
requested information type is MCI_SYSINFO_QUANTITY, then an integer value is placed in the
structure. (For more information, see the Win32 SDK.) If the application requested the information
by calling mciSendString, winmm.dll converts the integer to a string.

Guidelines for Returning Information
Use the following guidelines for returning information when developing a new driver:

• Implement the MCI_GETDEVCAPS, MCI_INFO, and MCI_STATUS commands as they are
described in the Win32 SDK. Be consistent with the implementations already provided with
existing drivers.

• Remember that the MCI_GETDEVCAPS and MCI_STATUS commands return integer values,
while MCI_INFO returns string values.

• Place strings requiring language translation in resource files. Return their resource identifiers
as integer values, using MCI_GETDEVCAPS, MCI_STATUS, or a customized extended
command. The strings returned by MCI_INFO contain information that does not require foreign
language translation, such as file and path names, or media identifier strings.

Closing an MCI Driver
A client application using MCI closes a driver by sending an MCI_CLOSE message. This
message is intercepted by winmm.dll, which sends the following messages to the appropriate MCI
driver, in the order listed:

1. MCI_CLOSE_DRIVER
2. DRV_CLOSE
3. DRV_DISABLE
4. DRV_FREE

Note that the driver does not receive the MCI_CLOSE message. Also be aware that
DRV_DISABLE and DRV_FREE are sent only if the calling application is the only one using the
driver. After DRV_FREE is sent, winmm.dll unloads the driver from the application's address
space.

For more information, see the following topics:

• Handling MCI_CLOSE_DRIVER
• Handling DRV_CLOSE
• Handling DRV_DISABLE
• Handling DRV_FREE

Handling MCI_CLOSE_DRIVER
When a driver receives an MCI_CLOSE_DRIVER command, it should close the object that is
associated with the driver identifier received in dwDriverID. For a nonshared simple device, the
object is the device. For a compound device, the object is an element.

If a device or element is being shared, then reception of an MCI_CLOSE_DRIVER message only

Handling MCI_CLOSE_DRIVER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 34 Windows NT DDK

means that the driver should no longer allow the caller access to the device or element. The
device or element should be closed only after there are no longer any applications using it.

Handling DRV_CLOSE
A driver should close a device only after all applications have finished using it. You might want to
ignore the DRV_CLOSE command (just return with a nonzero return value) if the application that
caused it to be sent is not the only one still using the driver.

Often, all of the steps required to close a device can be handled when a driver processes the
MCI_CLOSE_DRIVER command. In such cases the driver can simply return a nonzero value
when DRV_CLOSE is received.

Handling DRV_DISABLE
For information on handling DRV_DISABLE, see Introduction to Multimedia Drivers.

Handling DRV_FREE
If your driver provides a custom string table, unload it by calling mciFreeCommandResource
when DriverProc receives the DRV_FREE message. For more information on handling
DRV_FREE, see Introduction to Multimedia Drivers.

Guidelines for Handling MCI Commands
A developer's most important guideline is to make sure the driver design adheres to the command
descriptions and flag descriptions provided by the Win32 SDK. For example, the description of
MCI_PLAY says that the starting position is the current position and the ending position is the end
of the medium, unless the application includes MCI_FROM and MCI_TO flags.

If you need to provide extensions to the basic commands, do so in a manner that is consistent
with extended command sets that already exist.

If an application sends an MCI_PLAY command with MCI_NOTIFY set, subsequent MCI_PAUSE
and MCI_RESUME commands should not cancel the notification request. The application should
still be notified when the original play operation has completed. The MCI_PAUSE and
MCI_RESUME commands just delay the completion of the MCI_PLAY operation; they do not
cancel or modify it.

Drivers for compound devices can allow MCI_RECORD commands to be sent with the the
MCI_OPEN_ELEMENT flag set, but with the element file name specified as a null-terminated,
zero-length string. In this case the recorded data should be saved in temporary storage. On
receipt of a subsequent MCI_SAVE command, the driver should move the temporary data into a
permanent file. Alternatively, drivers can disallow MCI_RECORD commands without a valid
filename, and return MCIERR_FILENAME_REQUIRED if the filename is not included.

Creating Customized MCI Commands
If MCI's required and basic command sets do not provide all of the functionality needed by
applications to fully interact with a device, then a driver developer can create customized MCI
commands by doing one or both of the following:

• Extending the required and basic commands as necessary, by adding additional input flags,
redefining the command data structures, or both.

• Extending the command set by defining new commands and data structures.

You should match your MCI command extensions as closely as possible to existing command
extensions. Refer to the Win32 SDK for descriptions of existing command extensions.

You define new or modified MCI commands by creating new MCI command tables. Use these

Creating Customized MCI Commands
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 35 Windows NT DDK

tables to define new commands and flags, and to redefine or extend the required or basic
commands.

Creating new MCI command structures is also sometimes necessary. You must define a new
structure if you are creating a new command, or if you are modifying an existing command in a
way that requires additional structure members.

Creating New MCI Command Tables
You create a new MCI command table by:

• Defining MCI message constants for your commands, if they do not already exist.
• Defining flag constants for your command flags, if they do not already exist.
• Constructing a command table, using message strings, message constants, and flag constants.

Defining MCI Message Constants
If an MCI message constant does not already exist for your command in mmsystem.h, you must
define one. Place this definition in an include file that is available both to your driver and to
application developers. MCI message constants must be assigned values between the constants
MCI_USER_MESSAGES and MCI_LAST, which are defined in mmsystem.h.

Note that message constants cannot be defined using an expression, such as
"MCI_USER_MESSAGES + 1", because you are using the constant in a command table.
Command tables are defined within resource files, using RCDATA type, and this type does not
accept expressions. Define each messageconstant as a numeric value, such as:

#define MCI_MYCOMMAND 0xA01

Defining Flag Constants
You need to define new flag constants whenever you create new command modifiers, either for
existing commands or for new commands.

Flags are passed to MCI drivers in the lParam1 parameter to DriverProc. This is a DWORD
parameter. The first 16 bits (0 through 15) of the DWORD are reserved by MCI. Driver
developers can use bits 16 through 31 for customized flags. This means up to 16 different
customized flags can be defined for each command. You should be sure that new flag definitions
do not conflict with existing definitions.

Place new flag definitions in an include file that is available both to your driver and to application
developers. When naming flags, include the command and a representation of your device type
in the name. For example, flags for animation extensions to the "play" command are named as
follows:

#define MCI_ANIM_PLAY_SPEED 0x00010000L
#define MCI_ANIM_PLAY_REVERSE 0x00020000L
#define MCI_ANIM_PLAY_FAST 0x00040000L
#define MCI_ANIM_PLAY_SLOW 0x00080000L
#define MCI_ANIM_PLAY_SCAN 0x00100000L

Constructing a Command Table
Command tables are defined as raw data resources which must be compiled using the Microsoft
Windows Resource Compiler, discussed in the Win32 SDK. The command table can be created
as a separate DLL file, with a file extension of .mci, or it can be linked to the driver.

If you place the command table in a separate DLL, you can also include all of the driver's string
resources in the same file. This provides a convenient means for translating the driver's text into
additional languages by simply replacing this one file.

Constructing a Command Table
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 36 Windows NT DDK

Following is a small segment, including the first and last entries, of the core command table
provided in winmm.dll. This segment provides an illustration of how command tables are
constructed.

core RCDATA
BEGIN
 L"open\0", MCI_OPEN, 0, MCI_COMMAND_HEAD,
 L"\0", MCI_INTEGER, 0, MCI_RETURN,
 L"notify\0", MCI_NOTIFY, MCI_FLAG,
 L"wait\0", MCI_WAIT, MCI_FLAG,
 L"type\0", MCI_OPEN_TYPE, MCI_STRING,
 L"element\0", MCI_OPEN_ELEMENT, MCI_STRING,
 L"alias\0", MCI_OPEN_ALIAS, MCI_STRING,
 L"shareable\0", MCI_OPEN_SHAREABLE, MCI_FLAG,
 L"\0", 0L, MCI_END_COMMAND,
 L"close\0", MCI_CLOSE, 0, MCI_COMMAND_HEAD,
 L"notify\0", MCI_NOTIFY, MCI_FLAG,
 L"wait\0", MCI_WAIT, MCI_FLAG,
 L"\0", 0L, MCI_END_COMMAND,
 L"play\0", MCI_PLAY, 0, MCI_COMMAND_HEAD,
 L"notify\0", MCI_NOTIFY, MCI_FLAG,
 L"wait\0", MCI_WAIT, MCI_FLAG,
 L"from\0", MCI_FROM, MCI_INTEGER,
 L"to\0", MCI_TO, MCI_INTEGER,
 L"\0", 0L, MCI_END_COMMAND,
 .
 .
 .
 L"status\0", MCI_STATUS, 0, MCI_COMMAND_HEAD,
 L"\0", MCI_INTEGER, 0, MCI_RETURN,
 L"notify\0", MCI_NOTIFY, MCI_FLAG,
 L"wait\0", MCI_WAIT, MCI_FLAG ,
 L"\0", MCI_STATUS_ITEM, MCI_CONSTANT,
 L"position\0", MCI_STATUS_POSITION, MCI_INTEGER,
 L"length\0", MCI_STATUS_LENGTH, MCI_INTEGER,
 L"number of tracks\0",MCI_STATUS_NUMBER_OF_TRACKS, MCI_INTEGER,
 L"ready\0", MCI_STATUS_READY, MCI_INTEGER,
 L"mode\0", MCI_STATUS_MODE, MCI_INTEGER,
 L"time format\0", MCI_STATUS_TIME_FORMAT, MCI_INTEGER,
 L"current track\0", MCI_STATUS_CURRENT_TRACK, MCI_INTEGER,
 L"\0", 0L, MCI_END_CONSTANT,
 L"track\0", MCI_TRACK, MCI_INTEGER,
 L"start\0", MCI_STATUS_START, MCI_FLAG,
 L"\0", 0L, MCI_END_COMMAND,
 .
 .
 .
 L"set\0", MCI_SET, 0, MCI_COMMAND_HEAD,
 L"notify\0", MCI_NOTIFY, MCI_FLAG,
 L"wait\0", MCI_WAIT, MCI_FLAG ,
 L"time format\0", MCI_SET_TIME_FORMAT, MCI_CONSTANT,
 L"milliseconds\0", MCI_FORMAT_MILLISECONDS, 0, MCI_INTEGER,
 L"ms\0", MCI_FORMAT_MILLISECONDS, 0, MCI_INTEGER,
 L"\0", 0L, MCI_END_CONSTANT,
 L"door open\0", MCI_SET_DOOR_OPEN, MCI_FLAG,
 L"door closed\0", MCI_SET_DOOR_CLOSED, MCI_FLAG,
 L"audio\0", MCI_SET_AUDIO, MCI_CONSTANT,
 L"all\0", MCI_SET_AUDIO_ALL, MCI_INTEGER,
 L"left\0", MCI_SET_AUDIO_LEFT, MCI_INTEGER,

Constructing a Command Table
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 37 Windows NT DDK

 L"right\0", MCI_SET_AUDIO_RIGHT, MCI_INTEGER,
 L"\0", 0L, MCI_END_CONSTANT,
 L"video\0", MCI_SET_VIDEO, MCI_FLAG,
 L"on\0", MCI_SET_ON, MCI_FLAG,
 L"off\0", MCI_SET_OFF, MCI_FLAG,
 L"\0", 0L, MCI_END_COMMAND,
 .
 .
 .
 L"resume\0", MCI_RESUME, 0, MCI_COMMAND_HEAD,
 L"notify\0", MCI_NOTIFY, MCI_FLAG,
 L"wait\0", MCI_WAIT, MCI_FLAG,
 L"\0", 0L, MCI_END_COMMAND,
 L"\0", 0L, MCI_END_COMMAND_LIST
END

As shown in the previous example, a command table is defined by using an RCDATA statement,
which is described in the Win32 SDK.. The RCDATA declaration includes the table's name. For
the core table, the table's name is "core". For a device-type table, the table's name is the device
type, such as "videodisc".

Command tables contain command table entries. Each entry contains:

• A null-terminated string identifying a command or command modifier. This is the text that
applications specify with calls to mciSendString. Each string is prefaced with "L" to create
wide-character storage for UNICODE characters.

• A longword value containing a command constant or modifier flag constant value. Mostly,
these are the constants an application uses with the mciSendCommand function. Drivers
receive the constant values as umsg and lParam1 arguments to DriverProc. Note that some
predefined constants, such as MCI_INTEGER, only define single word values. These
single-word constants must be padded with an extra word to create a longword.

• A single word value representing the entry type.

The table must end with an entry of type MCI_END_COMMAND_LIST.

Example
As an example of how to define a command, look at the "play" command contained in the core
table. While the "play" command in the core command table is fairly simple, it illustrates several
of the entry types that can be used for creating a command description.

To define a command in a command table
1. Begin with an MCI_COMMAND_HEAD entry. This entry has the following format:
L"play\0", MCI_PLAY, 0, MCI_COMMAND_HEAD,

First, the entry contains a null-terminated, wide-character string containing the command's
string name. Next, a longword value is specified, with the MCI_PLAY bit set. (Because
MCI_PLAY is defined as a 16-bit constant, an additional word of zero is added as the highword
value for the longword.) Finally, the entry type is specified as MCI_COMMAND_HEAD, which
labels this entry as a new command.

2. Include two entries indicating that the command accepts the MCI_NOTIFY and MCI_WAIT
modifiers. (All command definitions must contain these two entries.)

L"notify\0", MCI_NOTIFY, MCI_FLAG,
L"wait\0", MCI_WAIT, MCI_FLAG,

The MCI_FLAG entry type is used for defining command modifiers that do not require either
input or output members within the command's data structure (in this case,
MCI_PLAY_PARMS). (See Creating New MCI Command Structures.)

3. Include command-specific modifier definitions. The "play" command accepts two modifiers,
"from" and "to".

Constructing a Command Table
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 38 Windows NT DDK

L"from\0", MCI_FROM, MCI_INTEGER,
L"to\0", MCI_TO, MCI_INTEGER,

The "from" and "to" modifiers both accept numeric arguments, such as "play videodisc1 from
10 to 100". The MCI_INTEGER type indicates that for each of these arguments, an
integer-typed member exists in the "play" command's MCI_PLAY_PARMS structure. Following
is a list of recognized data types:

MCI_INTEGER Integer
MCI_HWND Window handle
MCI_HPAL Palette handle
MCI_HDC Device Context handle
MCI_RECT Rectangle
MCI_STRING String

For a complete list of entry types, see Command Table Entry Types.

4. End the command definition with an MCI_END_COMMAND entry.
L"\0", 0L, MCI_END_COMMAND,

The entry must contain a null string, followed by a null longword.

Example
As another example, look at the "status" command. This command provides a return value, so its
command description includes an MCI_RETURN entry. This entry must appear immediately after
the MCI_COMMAND_HEAD entry.

L"status\0", MCI_STATUS, 0, MCI_COMMAND_HEAD,
L"\0", MCI_INTEGER, 0, MCI_RETURN,

An MCI_RETURN entry must contain a null string, followed by a longword specifiying the data
type of the command's return value. Any of the MCI data types can be used. In this case, the
command returns an integer value. The command's data structure must contain an integer-typed
member for storing the return value. (See Creating New MCI Command Structures.)

Defining Constant Values
Sometimes it is necessary to define a set of constant values that can be assigned to a data
structure member. Constant values are delimited by MCI_CONSTANT and
MCI_END_CONSTANT entries. Here is a section of the "set" command description:

L"audio\0", MCI_SET_AUDIO, MCI_CONSTANT,
L"all\0", MCI_SET_AUDIO_ALL, MCI_INTEGER,
L"left\0", MCI_SET_AUDIO_LEFT, MCI_INTEGER,
L"right\0", MCI_SET_AUDIO_RIGHT, MCI_INTEGER,
L"\0", 0L, MCI_END_CONSTANT,

An MCI_CONSTANT entry must contain a string, followed by a longword containing a flag value.
A command's data structure must reserve a DWORD-sized member for each MCI_CONSTANT
entry in the command table. Entries following the MCI_CONSTANT entry define a set of constant
values that can be set in the data structure member. The set of constant entries ends with an
MCI_END_CONSTANT entry, which must contain a null string and a null longword.

If an application uses mciSendString to specify the command "set vcr1 audio left", then
winmm.dll sets the MCI_SET_AUDIO flag in laram1 to indicate the dwAudio member for the
MCI_SET_PARMS structure is valid, and sets MCI_SET_AUDIO_LEFT in dwAudio.

Here is another section of the "status" description:

L"\0", MCI_STATUS_ITEM, MCI_CONSTANT,
L"position\0", MCI_STATUS_POSITION, MCI_INTEGER,
L"length\0", MCI_STATUS_LENGTH, MCI_INTEGER,
L"number of tracks\0",MCI_STATUS_NUMBER_OF_TRACKS, MCI_INTEGER,

Constructing a Command Table
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 39 Windows NT DDK

L"ready\0", MCI_STATUS_READY, MCI_INTEGER,
L"mode\0", MCI_STATUS_MODE, MCI_INTEGER,
L"time format\0", MCI_STATUS_TIME_FORMAT, MCI_INTEGER,
L"current track\0", MCI_STATUS_CURRENT_TRACK, MCI_INTEGER,
L"\0", 0L, MCI_END_CONSTANT,

For this constant list, the MCI_CONSTANT entry contains a null string. A null string is allowed if
the command description defines only one modifier type and, hence, one structure input member.
If the description defines more than one modifier, a string must be included so the command
parser can identify which command structure member to use.

For the "status" command, an application can specify "status vcr1 position", for example, to
obtain the current position, and "status vcr1 mode" to obtain the current mode. Both "position" and
"mode" use the dwItem member in MCI_STATUS_PARMS. In constrast, for the "set" command
an application must specify "set vcr1 time format milliseconds" to set the time format, and "set
vcr1 audio all" to set all audio channels. Here, "time format" and "audio" differentiate between the
dwTimeFormat and dwAudio members of MCI_SET_PARMS.

Command Table Entry Types
Following is a list of command table entry types that can be used for constructing a command
table. All of these types are defined as single word values.

Entry Type Purpose
MCI_COMMAND_HEAD First entry for each command. String identifies

command. Longword contains MCI message constant.
MCI_CONSTANT Introduces a set of constant command modifiers.

String and longword identify structure member in
which constant value is stored.

MCI_END_COMMAND Last entry for each command. String and longword
values are null.

MCI_END_COMMAND_LIST Last entry in a command table. String and longword
values are null.

MCI_END_CONSTANT Ends a constant set. String and longword values are
null.

MCI_FLAG Defines a command modifier that does not require
associated data structure storage. String and longword
values identify the modifier.

MCI_HDC Defines a command modifier that accepts an HDC
argument. String defines modifier name. Longword
identifies data structure member in which HDC value
is stored. Also used to specify return type with
MCI_RETURN.

MCI_HPAL Defines a command modifier that accepts an HPAL
argument. String defines modifier name. Longword
identifies data structure member in which HPAL value
is stored. Also used to specify return type with
MCI_RETURN.

MCI_HWND Defines a command modifier that accepts an HWND
argument. String defines modifier name. Longword
identifies data structure member in which HWND
value is stored. Also used to specify return type with
MCI_RETURN.

MCI_INTEGER Defines a command modifier that accepts an integer
argument. String defines modifier name. Longword
identifies data structure member in which integer is
stored. Also used to specify return type with

Command Table Entry Types
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 40 Windows NT DDK

MCI_RETURN.
MCI_RECT Defines a command modifier that accepts a RECT

argument. String defines modifier name. Longword
identifies data structure member in which RECT value
is stored. Also used to specify return type with
MCI_RETURN.

MCI_RETURN Declares that command returns a value. String value
is null. Longword identifies the return value's type,
which can be MCI_INTEGER, MCI_HDC, MCI_HPAL,
MCI_HWND, MCI_RECT, or MCI_STRING.

MCI_STRING Defines a command modifier that accepts a string
pointer argument. String in command table defines
modifier name. Longword identifies data structure
member in which string pointer argument is stored.
Also used to specify return type with MCI_RETURN.

Loading and Unloading a Command Table
A driver loads a customized command table by calling mciLoadCommandResource, as follows:

uCommandTable = mciLoadCommandResource(hModuleInstance, "mcivcr", 0);

The call should be made when DriverProc receives a DRV_LOAD message. In the example, the
command table's name is "mcivcr", which means "mcivcr" is the nameID argument to the table's
RCDATA statement. Additionally, if you place the command table in a separate file, the file must
be named mcivcr.mci. The file must reside in a directory that is accessible by Win32's CreateFile
function.

A driver must unload its customized command table by calling mciFreeCommandResource.
This call should be made when DriverProc receives a DRV_FREE message.

Every driver that defines a customized command table must use mciLoadCommandResource
and mciFreeCommandResource to load and unload the table. There is one exception to this
rule  if the command table defines a new device type and if the table resides in a separate file,
then the driver does not need to explicitly load and unload the table. In this case, winmm.dll uses
the device type name that the application specifies with the MCI_OPEN message to locate and
load the command table.

In other words, a driver must explicitly load and unload its customized command table if the table
is device-specific (as opposed to being for a device type) or if the table is linked to the driver.

If you create a customized command table for a one of the device types provided by Microsoft,
and if you put the table in a separate file, do not use the device type name as the file name.
Otherwise, other drivers will not be able to access the device type table provided by Microsoft
because your table will override it.

How the MCI Parser Uses Command Tables
The MCI parser, within winmm.dll, is invoked when an application calls mciSendString. The
parser reads the command from the command string and attempts to find the command in one of
the command tables.

Code in winmm.dll searches for a customized table. A customized table is one that the driver has
loaded by calling mciLoadCommandResource. First, winmm.dll uses the table name specified
with mciLoadCommandResource and attempts to locate a file with that name and an extension
of .mci. If a separate file is not found, the driver DLL is searched for a resource with the specified
name.

This scheme of searching for a separate file before searching inside the driver facilitates creation
of location-specific command tables. Tables for various languages can be created without
affecting the driver. If you place the command table in a separate file, you can also include all of

How the MCI Parser Uses Command Tables
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 41 Windows NT DDK

the driver's string resources in the same file. When winmm.dll attempts to locate a string resource
it also searchs in the .mci file first.

If a customized table is found, the parser searches the table for the command. If a customized
table does not exist, or if the parser cannot find the command in a customized table, then the
parser uses the tables defined in winmm.dll.

The parser compares the command string with the string specified in each
MCI_COMMAND_HEAD entry of the table until it finds a match. When a match is found, the
parser extracts the value stored in the longword following the string and uses it as the umsg
argument for DriverProc. The parser then tries to match command modifiers included in the
command string with entries in the command description. For each match, the parser extracts the
value stored in the longword following the matched string and OR's it into the lParam1 argument
for DriverProc. For all modifier types except MCI_FLAG, the parser also takes the modifier value
from the command string and stores it in the command's data structure. The parser allows
command modifiers to be included in random order in the command string, so "play vcr1 to 100
from 10" is equivalent to "play vcr1 from 10 to 100".

Every time the parser receives a new command, it checks for the command tables in the order
described. This means that a driver's customized command table does not need to include all of
the commands the driver supports, if it only extends some of them. If, for example, a driver adds
new flags to the "play" command but supports only the default (core) behavior for all other
commands, then the custom table only needs to contain the extended "play" command. The
parser uses the core table to parse the rest of the commands.

Creating New MCI Command Structures
You must create new MCI command structures whenever you extend existing commands or
define new ones. For every command description you place in a customized command table, you
must define a customized data structure. Place this definition in an include file that is available
both to your driver and to application developers. Structure definitions for the core commands
reside in mmsystem.h.

Command structure definitions follow a standardized format. A typical structure is the following
MCI_STATUS_PARMS structure, used with the "status" command.

typedef struct tagMCI_STATUS_PARMS {
 DWORD dwCallback;
 DWORD dwReturn;
 DWORD dwItem;
 DWORD dwTrack;
} MCI_STATUS_PARMS;

There are rules you should follow for naming command structures, laying out command
structures, and referencing command structures.

Naming Command Structures
When naming a command structure, include the command in the structure name. Also include the
device type, in order to differentiate customized structures from the structures defined for the core
commands. An example is the following structure, used with the extension to the play command
for animation devices:

typedef struct tagMCI_ANIM_PLAY_PARMS {
 DWORD dwCallback;
 DWORD dwFrom;
 DWORD dwTo;
 DWORD dwSpeed;
} MCI_ANIM_PLAY_PARMS;

Laying Out Command Structures
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 42 Windows NT DDK

Laying Out Command Structures
The first member of a command structure must be a DWORD for storing a window handle. The
window handle is provided by the application and is used by winmm.dll for delivering command
notification messages associated with the MCI_NOTIFY flag. Since all commands must support
MCI_NOTIFY, all structures must contain this member. By convention, this member is called
dwCallback.

Following the dwCallback member, each additional structure member must be matched to an
entry in the command's description within the command table. The order and data type of each
member must match those in the command description.

If a return value is associated with the command, then the second structure member is used for
storing the return value. For all return types except MCI_STRING and MCI_RECT, the return
member must be DWORD-sized. If the command returns a string, then the structure must provide
storage for a string buffer address and a string buffer length, both of which are supplied by the
application. For commands whose return type is MCI_RECT, the structure must provide a
RECT-sized return member.

The "info" command's return value is a string, and its structure follows:

typedef struct tagMCI_INFO_PARMS {
 DWORD dwCallback;
 LPSTR lpstrReturn;
 DWORD dwRetSize;
} MCI_INFO_PARMS;

If a command does not provide a return value, then the command's structure does not include
return members. For example, the "play" command does not provide a return value. Following is
its structure:

typedef struct tagMCI_PLAY_PARMS {
 DWORD dwCallback;
 DWORD dwFrom;
 DWORD dwTo;
} MCI_PLAY_PARMS;

After the return value member, the rest of the structure members are used for storing input or
output arguments. Following is the "play" command description, so you can see how it matches
the MCI_PLAY_PARMS structure. Entries with the MCI_FLAG type do not require space in the
data structure.

L"play\0", MCI_PLAY, 0, MCI_COMMAND_HEAD,
L"notify\0", MCI_NOTIFY, MCI_FLAG,
L"wait\0", MCI_WAIT, MCI_FLAG,
L"from\0", MCI_FROM, MCI_INTEGER,
L"to\0", MCI_TO, MCI_INTEGER,
L"\0", 0L, MCI_END_COMMAND,

Here's the "open" command's description:

L"open\0", MCI_OPEN, 0, MCI_COMMAND_HEAD,
L"\0", MCI_INTEGER, 0, MCI_RETURN,
L"notify\0", MCI_NOTIFY, MCI_FLAG,
L"wait\0", MCI_WAIT, MCI_FLAG,
L"type\0", MCI_OPEN_TYPE, MCI_STRING,
L"element\0", MCI_OPEN_ELEMENT, MCI_STRING,
L"alias\0", MCI_OPEN_ALIAS, MCI_STRING,
L"shareable\0", MCI_OPEN_SHAREABLE, MCI_FLAG,
L"\0", 0L, MCI_END_COMMAND,

And here is the MCI_OPEN_PARMS structure:

Laying Out Command Structures
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 43 Windows NT DDK

typedef struct tagMCI_OPEN_PARMS {
 DWORD dwCallback;
 MCIDEVICEID wDeviceID;
 WORD wReserved0;
 LPCSTR lpstrDeviceType;
 LPCSTR lpstrElementName;
 LPCSTR lpstrAlias;
} MCI_OPEN_PARMS;

Note the difference between string return values, shown previously in MCI_INFO_PARMS, and
string arguments, illustrated in MCI_OPEN_PARMS. For string return values, the structure must
contain members to hold both a string buffer address and a string buffer size. For string
arguments, only a string pointer is stored.

Referencing Command Structures
Drivers should obey the following rules when referencing command data structures:

• Test for null structure pointers. For some commands, it is acceptable for an application to send
the command without the structure. For example, if an application sends the "play" command
without modifiers, it does not need the structure.

• Before referencing a structure's input members, check the lParam1 argument to DriverProc to
see if the member's flag is set. Data in the structure member is only valid if the approriate flag
has been set. Following is an example:

 if (lparam1 & MCI_FROM)
 dwFrom = lparam2->dwFrom;

MCI Reference
This section describes the functions, messages, structures, and macros used by MCI drivers. The
following topics are provided:

• MCI Functions
• MCI Messages
• MCI Structures
• MCI Macros

MCI Functions
This section describes the functions defined by winmm.dll that are used by MCI drivers.

mciDriverNotify
BOOL APIENTRY

 mciDriverNotify (
 HANDLE hwndCallback,
 MCIDEVICEID wDeviceID,
 UINT uStatus
);

MCI drivers call mciDriverNotify to post an MM_MCINOTIFY message to an application.

Parameters
hwndCallback

Specifies the handle of the window to notify. The handle is obtained from the dwCallback
member of the structure pointed to by the DriverProc lParam2 parameter.

mciDriverNotify
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 44 Windows NT DDK

wDeviceID
Specifies the device ID. This is the device ID received from DriverProc.

uStatus
Specifies the status of the operation requested by the application. Can be one of the following
values:

MCI_NOTIFY_SUCCESSFUL Driver successfully completed the requested
operation.

MCI_NOTIFY_SUPERSEDED Application sent an MCI message with the
MCI_NOTIFY flag set, then sent a second
message with MCI_NOTIFY set before the
first operation completed. Driver calls
mciNotifyDriver with
MCI_NOTIFY_SUPERSEDED status, then
calls mciNotifyDriver again when the
second operation completes.

MCI_NOTIFY_ABORTED Application sent a command that prevents
the notification condition from being
satisfied. For example, the command "stop
vcr1" cancels a pending notification for
"play vcr1 to 500 notify".

MCI_NOTIFY_FAILURE A device error prevented the notification
condition from being satisfied.

Return Value
If a notification is successfully sent, mciDriverNotify returns TRUE; otherwise, it returns FALSE.

Comments
Drivers call mciDriverNotify after an operation has completed, if the application that requested
the operation included the MCI_NOTIFY flag with the command. See Handling the MCI_NOTIFY
Flag.

mciDriverYield
UINT APIENTRY

 mciDriverYield (
 MCIDEVICEID wDeviceID
);

The mciDriverYield function calls the application's yield function. The yield function checks to
see if the user has pressed the break key.

Parameters
wDeviceID

Specifies the device ID. This is the device ID received from DriverProc.

Return Value
Returns the value returned from the yield function. If the break key was pressed, the return value
should be a nonzero value. Otherwise returns zero.

Comments
Drivers call mciDriverYield while waiting for a requested operation to complete, if the application
included the MCI_WAIT flag with the command. See Handling the MCI_WAIT Flag.

mciFreeCommandResource
BOOL APIENTRY

mciFreeCommandResource
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 45 Windows NT DDK

 mciFreeCommandResource(
 UINT wTable
);

The mciFreeCommandResource function frees from memory a command table that was loaded
with mciLoadCommandResource.

Parameters
wTable

The table index number returned from a previous call to mciLoadCommandResource.

Return Value
Returns FALSE if the table index number is invalid. Oherwise, returns TRUE.

Comments
For more information see Loading and Unloading a Command Table.

mciGetDriverData
DWORD APIENTRY

 mciGetDriverData(
 MCIDEVICEID wDeviceID
);

The mciGetDriverData function returns instance-specific information that was set with
mciSetDriverData.

Parameters
wDeviceID

Specifies the MCI device ID.

Return Value
Returns the driver instance information. Returns zero if an error occurs.

Comments
A driver can test for an error return only when the valid value is known to be nonzero, if, for
example, the driver had previously called mciSetDriverData and specified a pointer value. If the
driver has set the instance information to zero with mciSetDriverData, then it cannot test for an
error return from mciGetDriverData.

mciLoadCommandResource
UINT APIENTRY

 mciLoadCommandResource(
 HANDLE hInstance,
 LPCWSTR lpResName,
 UINT wType
);

The mciLoadCommandResource function loads the specified resource and registers it as an
MCI command table.

Parameters
hInstance

Specifies the driver module's instance handle. This argument is ignored if the resource resides
in an external file.

lpResName
Points to a string representing the name of the resource.

mciLoadCommandResource
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 46 Windows NT DDK

wType
Specifies the device type. Customized device-specific tables must specify a type of zero.

Return Value
If an error occurs, returns MCI_NO_COMMAND_TABLE. Otherwise, returns a command table
index number.

Comments
The mciLoadCommandResource function first attempts to locate a file, using the lpResName
argument as the filename, with an extension of .mci. If a file is found, the command table is
loaded from the file. This file can also contain string resources.

If a file is not found, then lpResName is assumed to be the name of a resource that is linked to
the driver.

For more information see Loading and Unloading a Command Table.

mciSetDriverData
BOOL APIENTRY

 mciSetDriverData(
 MCIDEVICEID wDeviceID,
 DWORD dwData
);

The mciSetDriverData function is used for storing instance-specific information for an MCI driver.

Parameters
wDeviceID

Specifies a device ID.
dwData

Specifies the information to assign.

Return Value
Returns FALSE if the device ID is invalid. Otherwise returns TRUE.

Comments
Drivers can call mciSetDriverData to associate a driver-defined DWORD value with the current
instance of the driver. Typically, an MCI driver calls this function while processing the
MCI_OPEN_DRIVER message, specifying, for example, a pointer to an instance-specific data
structure. The driver might call the function again when processing an MCI_CLOSE_DRIVER
message, specifying a dwData value of zero. The driver can retrieve the stored value by calling
mciGetDriverData.

MCI Messages
This section describes the command messages that MCI drivers are required to support. For more
information on the types of MCI command messages, see MCI Command Types.

For descriptions of all other MCI commands, refer to the Win32 SDK.

The command messages are defined in mmsystem.h.

MCI_CLOSE
MCI drivers do not receive the MCI_CLOSE command. Instead, they receive
MCI_CLOSE_DRIVER. See Closing an MCI Driver.

MCI_CLOSE_DRIVER

MCI_CLOSE_DRIVER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 47 Windows NT DDK

The MCI_CLOSE_DRIVER message requests an MCI driver to close a driver instance that was
previously opened with an MCI_OPEN_DRIVER message.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
MCI_CLOSE_DRIVER

lParam1
Contains the flags specified by the application, with the MCI_CLOSE command.

lParam2
Specifies a pointer to an MCI_GENERIC_PARMS structure, or to a customized structure.

Return Value
If the close operation succeeds, the driver returns zero. Otherwise, the driver returns one of tbe
MCIERR error codes defined in mmsystem.h.

Comments
A client sends the message by calling the driver's DriverProc entry point, passing the specified
parameters. When an application sends an MCI_CLOSE message, winmm.dll intercepts it and
sends MCI_CLOSE_DRIVER to the driver.

See Also
Closing an MCI Driver, MCI_OPEN_DRIVER

MCI_GETDEVCAPS
The MCI_GETDEVCAPS message requests an MCI driver to return device capabilities
information.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
MCI_GETDEVCAPS

lParam1
Contains the flags specified by the application.

lParam2
Specifies a pointer to an MCI_GETDEVCAPS_PARMS structure, or to a customized structure.

Return Value
If the operation succeeds, the driver returns zero. Otherwise, the driver returns one of tbe
MCIERR error codes defined in mmsystem.h.

Comments
A client sends the message by calling the driver's DriverProc entry point, passing the specified
parameters.

A driver tests lParam1 to determine the type of information to return. The driver returns the
requested information in the structure pointed to by lParam2. Refer to the Win32 SDK description

MCI_GETDEVCAPS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 48 Windows NT DDK

of MCI_GETDEVCAPS to determine the types of information the driver should return.

See Also
Providing Device Information

MCI_INFO
The MCI_INFO message requests an MCI driver to return device or driver information.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
MCI_INFO

lParam1
Contains the flags specified by the application.

lParam2
Specifies a pointer to an MCI_INFO_PARMS structure, or to a customized structure.

Return Value
If the operation succeeds, the driver returns zero. Otherwise, the driver returns one of tbe
MCIERR error codes defined in mmsystem.h.

Comments
A client sends the message by calling the driver's DriverProc entry point, passing the specified
parameters.

A driver tests lParam1 to determine the type of information to return. The driver returns the
requested information as a string in a buffer. The buffer's address and size are contained in the
structure pointed to by lParam2. Refer to the Win32 SDK description of MCI_INFO to determine
the types of information the driver should return.

If the application includes the MCI_INFO_PRODUCT flag, the returned string should include the
manufacturer of the hardware and, if possible, model identification information. If a driver applies
to a device type instead of a specific device, it should return the string name of the device type.

If a driver extends the MCI_INFO command to request additional information, it should not return
information that is returned for the MCI_STATUS command.

See Also
Providing Device Information

MCI_OPEN
MCI drivers do not receive the MCI_OPEN command. Instead, they receive
MCI_OPEN_DRIVER. See "Opening an MCI Driver".

MCI_OPEN_DRIVER
The MCI_OPEN_DRIVER message requests an MCI driver to open a driver instance.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

MCI_OPEN_DRIVER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 49 Windows NT DDK

hDriver
Driver handle.

uMsg
MCI_OPEN_DRIVER

lParam1
Contains the flags specified by the application, with the MCI_OPEN command.

lParam2
Specifies a pointer to an MCI_OPEN_PARMS structure, or to a customized structure.

Return Value
If the operation succeeds, the driver returns zero. Otherwise, the driver returns one of the
MCIERR error codes defined in mmsystem.h.

Comments
A client sends the message by calling the driver's DriverProc entry point, passing the specified
parameters. When an application sends an MCI_OPEN message, winmm.dll intercepts it and
sends MCI_OPEN_DRIVER to the driver.

See Also
Opening an MCI Driver, MCI_CLOSE_DRIVER

MCI_STATUS
The MCI_STATUS message requests an MCI driver to return device status information.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
MCI_STATUS

lParam1
Contains the flags specified by the application.

lParam2
Specifies a pointer to an MCI_STATUS_PARMS structure, or to a customized structure.

Return Value
If the operation succeeds, the driver returns zero. Otherwise, the driver returns one of tbe
MCIERR error codes defined in mmsystem.h.

Comments
A client sends the message by calling the driver's DriverProc entry point, passing the specified
parameters.

A driver tests lParam1 to determine the type of information to return. The driver returns the
requested information in the structure pointed to by lParam2. Refer to the Win32 SDK description
of MCI_STATUS to determine the types of information the driver should return.

See Also
Providing Device Information

MCI Structures
This section describes the structures associated with the command messages that MCI drivers

MCI Structures
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 50 Windows NT DDK

are required to support.

For descriptions of all other MCI command structures, refer to the Win32 SDK.

MCI_GENERIC_PARMS
typedef struct tagMCI_GENERIC_PARMS {
 DWORD dwCallback;
} MCI_GENERIC_PARMS;

The MCI_GENERIC_PARMS structure is the data structure associated with the
MCI_CLOSE_DRIVER command. This structure can be used with any command requiring only a
minimal structure definition.

Members
dwCallback

Contains handle of window to receive MM_MCINOTIFY message.

MCI_GETDEVCAPS_PARMS
typedef struct tagMCI_GETDEVCAPS_PARMS {
 DWORD dwCallback;
 DWORD dwReturn;
 DWORD dwItem;
} MCI_GETDEVCAPS_PARMS;

The MCI_GETDEVCAPS_PARMS structure is the standard data structure associated with the
MCI_GETDEVCAPS command. To find out if customized versions of this structure exist, see the
description of MCI_GETDEVCAPS in the Win32 SDK.

Members
dwCallback

Contains handle of window to receive MM_MCINOTIFY message.
dwReturn

Receives information returned by the driver.
dwItem

Contains a flag indicating the type of information requested. For a list of valid flags, see the
description of MCI_GETDEVCAPS in the Win32 SDK. The contents of dwItem are valid only if
MCI_GETDEVCAPS_ITEM is set in the lParam1 argument to DriverProc.

MCI_INFO_PARMS
typedef struct tagMCI_INFO_PARMS {
 DWORD dwCallback;
 LPSTR lpstrReturn;
 DWORD dwRetSize;
} MCI_INFO_PARMS;

The MCI_INFO_PARMS structure is the standard data structure associated with the MCI_INFO
command. To see if customized versions of this structure exist, refer to the description of
MCI_INFO in the Win32 SDK.

Members
dwCallback

Contains handle of window to receive MM_MCINOTIFY message.
lpstrReturn

Contains pointer to buffer that the driver fills with return string.
dwRetSize

Contains size of return buffer.

MCI_INFO_PARMS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 51 Windows NT DDK

MCI_OPEN_DRIVER_PARMS
typedef struct {
 MCIDEVICEID wDeviceID;
 LPCWSTR lpstrParams;
 UINT wCustomCommandTable;
 UINT wType;
} MCI_OPEN_DRIVER_PARMS;

The MCI_OPEN_DRIVER_PARMS structure is the data structure associated with the DRV_OPEN
command for MCI drivers. See Opening an MCI Driver.

Members
wDeviceID

Contains the MCI device ID.
lpstrParams

Contains a pointer to a zero-terminated string. The string contains any characters that follow
the filename in the system registry.

wCustomCommandTable
Receives a handle returned from mciLoadCommandResource, or
MCI_NO_COMMAND_TABLE.

wType
Receives one of the following defined MCI device types:

• MCI_DEVTYPE_ANIMATION
• MCI_DEVTYPE_CD_AUDIO
• MCI_DEVTYPE_DAT
• MCI_DEVTYPE_DIGITAL_VIDEO
• MCI_DEVTYPE_OVERLAY
• MCI_DEVTYPE_SEQUENCER
• MCI_DEVTYPE_SCANNER
• MCI_DEVTYPE_VCR
• MCI_DEVTYPE_VIDEODISC
• MCI_DEVTYPE_WAVEFORM_AUDIO

If the driver does not support any of the defined types, it should set wType to
MCI_DEVTYPE_OTHER.

MCI_OPEN_PARMS
typedef struct tagMCI_OPEN_PARMS {
 DWORD dwCallback;
 MCIDEVICEID wDeviceID;
 WORD wReserved0;
 LPCSTR lpstrDeviceType;
 LPCSTR lpstrElementName;
 LPCSTR lpstrAlias;
} MCI_OPEN_PARMS;

The MCI_OPEN_PARMS structure is the standard data structure associated with the
MCI_OPEN_DRIVER command. To find out if customized versions of this structure exist, see the
description of MCI_OPEN in the Win32 SDK.

Members
dwCallback

Contains handle of window to receive MM_MCINOTIFY message.

MCI_OPEN_PARMS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 52 Windows NT DDK

wDeviceID
Contains the device ID.

wReserved0
Reserved.

lpstrDeviceType
Contains device type string, if MCI_OPEN_TYPE is set in the lParam1 argument to DriverProc.

lpstrElementName
Contains element name string, if MCI_OPEN_ELEMENT is set in the lParam1 argument to
DriverProc.

lpstrAlias
Contains alias string, if MCI_OPEN_ALIAS is set in the lParam1 argument to DriverProc.

MCI_STATUS_PARMS
typedef struct tagMCI_STATUS_PARMS {
 DWORD dwCallback;
 DWORD dwReturn;
 DWORD dwItem;
 DWORD dwTrack;
} MCI_STATUS_PARMS;

The MCI_STATUS_PARMS structure is the standard data structure associated with the
MCI_STATUS command. To find out if customized versions of this structure exist, see the
description of MCI_STATUS in the Win32 SDK.

Members
dwCallback

Contains handle of window to receive MM_MCINOTIFY message.
dwReturn

Receives driver-supplied integer return value.
dwItem

Contains a flag indicating the type of information requested. For a list of valid flags, see the
description of MCI_STATUS in the Win32 SDK. The contents of dwItem is valid only if
MCI_STATUS_ITEM is set in the lParam1 argument to DriverProc.

MCI Macros
This topic describes macros available to MCI drivers.

MAKEMCIRESOURCE
LRESULT

 MAKEMCIRESOURCE(
 WORD wReturn,
 WORD wResource
);

The MAKEMCIRESOURCE macro concatenates two word values to create a longword value. Its
purpose is to create a longword value that contains both a constant value and a resource ID.

Parameters
wReturn

Specifies the constant value.
wResource

Specifies the resource ID.

MAKEMCIRESOURCE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 53 Windows NT DDK

Return Value
Returns the longword result of the concatenation.

Comments
The MAKEMCIRESOURCE macro is used for constructing a longword value that can be returned
in a command structure's dwReturn member. Structures for the MCI_GETDEVCAPS and
MCI_STATUS commands contain this member. Extended commands can also include this
structure member. The MAKEMICRESOURCE macro is used in combination with the
MCI_RESOURCE_RETURNED and MCI_RESOURCE_DRIVER return values for DriverProc.
See Returning Information to Applications.

Time Formatting Macros
The following time formatting macros are available to both MCI drivers and applications. The
macros are defined in mmsystem.h and are described in the Win32 SDK.

MCI_HMS_HOUR
Retrieves the hours component from a parameter containing packed hours/minutes/seconds
(HMS) information.

MCI_HMS_MINUTE
Retrieves the minutes component from a parameter containing packed hours/minutes/seconds
(HMS) information.

MCI_HMS_SECOND
Retrieves the seconds component from a parameter containing packed hours/minutes/seconds
(HMS) information.

MCI_MAKE_HMS
Creates a time value in packed hours/minutes/seconds (HMS) format from the given hours,
minutes, and seconds values.

MCI_MAKE_MSF
Creates a time value in packed minutes/seconds/frames (MSF) format from the given minutes,
seconds, and frame values.

MCI_MAKE_TMSF
Creates a time value in packed tracks/minutes/seconds/frames (TMSF) format from the given
tracks, minutes, seconds, and frames values.

MCI_MSF_FRAME
Creates the frames component from a parameter containing packed minutes/seconds/frames
(MSF) information.

MCI_MSF_MINUTE
Creates the minutes component from a parameter containing packed minutes/seconds/frames
(MSF) information.

MCI_MSF_SECOND
Creates the seconds component from a parameter containing packed minutes/seconds/frames
(MSF) information.

MCI_TMSF_FRAME
Retrieves the frames component from a parameter containing packed
tracks/minutes/seconds/frames (TMSF) information.

MCI_TMSF_MINUTE
Retrieves the minutes component from a parameter containing packed
tracks/minutes/seconds/frames (TMSF) information.

MCI_TMSF_SECOND
Retrieves the seconds component from a parameter containing packed
tracks/minutes/seconds/frames (TMSF) information.

MCI_TMSF_TRACK
Retrieves the tracks component from a parameter containing packed
tracks/minutes/seconds/frames (TMSF) information.

Time Formatting Macros
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 54 Windows NT DDK

Audio Device Drivers
The following topics explain how to write audio device drivers for Windows NT:

• Introduction to Audio Device Drivers
• Designing a User-Mode Audio Driver
• Designing a Kernel-Mode Audio Driver
• Audio Driver Reference

For a general discussion of multimedia device drivers, refer to Introduction to Multimedia Drivers.

Introduction to Audio Device Drivers
The following topics provide an introductory information about audio device drivers:

• Types of Audio Devices
• Audio Software Components
• The Standard Audio Driver, mmdrv.dll
• Sample Audio Drivers

Types of Audio Devices
The following types of audio devices can be accessed by applications using API functions
provided by the Windows NT Win32 subsystem:

• Waveform input devices that convert analog audio signals into digital information.
• Waveform output devices that convert digital audio information into analog audio signals.
• MIDI input ports that receive MIDI messages from external MIDI devices, such as keyboards.
• MIDI output ports that send MIDI messages to external MIDI devices, such as keyboards and

drum machines.

• Internal MIDI synthesizers, which are internal MIDI output devices that synthesize music from
MIDI messages sent by applications.

• Auxiliary audio devices such as CD players, which do not require data transfers but whose
output can be mixed with MIDI and waveform audio, and whose volume can be controlled by a
driver.

• Mixer devices that control multiple audio lines.

Combination drivers are audio device drivers that can support several of these types of audio
devices. The standard audio driver, mmdrv.dll, is a combination driver.

Audio Software Components
The following diagram illustrates the relationship of the major Windows NT audio software
components.

Audio Software Components
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 55 Windows NT DDK

User-mode
audio driver

midimap.dll msacm32.drv

winmm.dll msacm32.dll

Application

ACM
Driver

ACM
Driver

drvlib.lib

User Mode
Kernel Mode

Kernel-mode
audio driver

Windows NT Executive

soundlib.lib

hardware hardware hardware

Kernel-mode
audio driver

Kernel-mode
audio driver

User-mode
audio driver

User-mode
audio driver

The components in the diagram include:

• Application
Any user-mode, Win32-based application that calls the audio API functions described in the
Win32 SDK.

• winmm.dll
A dynamic-link library that exports the waveform, MIDI, mixer, and auxiliary audio functions
described in the Win32 SDK.

• msacm32.dll
A dynamic-link library that contains the Audio Compression Manager (ACM). For information
about the ACM and ACM drivers, see Audio Compression Manager Drivers.

• midimap.dll
The Windows NT MIDI Mapper.

• msacm32.drv
The Windows NT Wave Mapper.

• User-mode drivers

Audio Software Components
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 56 Windows NT DDK

Dynamic-link libraries that communicate with kernel-mode drivers (or sometimes other
user-mode drivers).

• ACM drivers
Dynamic-link libraries under the control of the ACM. See msacm32.dll, above.

• drvlib.lib
A library used as a basis for user-mode audio drivers. For more information, see Using
drvlib.lib.

• Kernel-mode drivers
Kernel-mode code that communicates with the Windows NT Executive in order to access
device hardware.

• soundlib.lib
A library used as a basis for kernel-mode audio drivers. For more information, see Using
soundlib.lib.

The Standard Audio Driver, mmdrv.dll
Microsoft provides a standard user-mode audio driver for Windows NT, called mmdrv.dll. It is a
combination driver that supports waveform input and output devices, MIDI input and output
devices, and auxiliary audio devices. It provides the user-mode audio driver entry points and
support functions necessary for handling all of these device types.

If you are providing driver support for new audio hardware, you might be able to use mmdrv.dll as
your user-mode driver. You can use mmdrv.dll if it provides access to all of the functionality
provided by your kernel-mode driver. If you are able to use mmdrv.dll as your user-mode driver,
then you only need to write a kernel-mode driver for your hardware.

If you want to use mmdrv.dll functionality but need to provide customized installation and
configuration operations, consider using drvlib.lib, which is a library you can use to construct a
customized user-mode driver, instead of using mmdrv.dll.

You can even use mmdrv.dll and drvlib.lib in combination. The user-mode driver for the Creative
Labs Sound Blaster does this. See Sample Audio Drivers and Examining sndblst.sys.

The MS-DOS device names supported by mmdrv.dll are defined in the ntddwave.h, ntddmidi.h,
and ntddaux.h files. MS-DOS names are prepended with "\\.\", as in "\\.\WaveOut0".

Source code for mmdrv.dll is included with this DDK.

Sample Audio Drivers
This DDK includes the source code for the following audio drivers and libraries:

Driver or Library Location of Source Files

User mode audio driver library
(see Using drvlib.lib.)

\ddk\src\mmedia\drvlib

Standard user-mode audio driver \ddk\src\mmedia\mmdrv
Media Vision ProAudio Spectrum 16 driver \ddk\src\mmedia\mvaudio
Creative Labs Sound Blaster driver \ddk\src\mmedia\sndblst
Windows sound system driver \ddk\src\mmedia\sndsys
Kernel-mode driver library
(see Using soundlib.lib.)

\ddk\src\mmedia\soundlib

Ad Lib and OPL3 MIDI synthesizer driver \ddk\src\mmedia\synth
User-mode synthesizer driver library
(see Using synthlib.lib.)

\ddk\src\mmedia\synthlib

For the driver samples, code for both the user-mode and the kernel-mode driver is provided.

Sample Audio Drivers
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 57 Windows NT DDK

Under the listed driver directory, a \dll subdirectory contains the user-mode driver sources, and a
\driver subdirectory contains the kernel-mode driver sources.

Within this chapter frequent reference is made to the user-mode and kernel-mode drivers for the
Creative Labs Sound Blaster card. The kernel-mode driver is sndblst.sys. Two user-mode drivers
call sndblst.sys: the standard audio driver, mmdrv.dll, handles MIDI input and output operations; a
customized driver, sndblst.dll, handles waveform, mixer, synthesizer, and auxiliary I/O operations.

Designing a User-Mode Audio Driver
User-mode audio drivers are implemented as dynamic-link libraries. This section contains the
following topics to assist you in designing a user-mode audio driver:

• User-Mode Audio Driver Entry Points
• User-Mode Audio Driver Messages
• Controlling Waveform and MIDI Devices
• Controlling Auxiliary Audio Devices
• Controlling Mixers
• Notifying Clients from Audio Drivers
• Using drvlib.lib
• Using synthlib.lib
• General Design Guidelines

User-Mode Audio Driver Entry Points
Like all installable user-mode drivers, user-mode audio drivers must export a DriverProc entry
point and support the standard driver messages. Audio drivers typically ignore the DRV_OPEN
standard message.

Audio drivers must also export one or more of the following entry points:

auxMessage Entry point for auxiliary audio drivers.
midMessage Entry point for MIDI input drivers.
modMessage Entry point for MIDI output drivers.
mxdMessage Entry point for mixer drivers.
widMessage Entry point for waveform input drivers.
wodMessage Entry point for waveform output drivers.

Like the DriverProc entry point, these additional entry points are implemented as functions that
receive and process messages. Applications control multimedia device operations by calling
multimedia API functions, which are described in the Win32 SDK and defined in winmm.dll. Code
within winmm.dll translates each API function call into a call to a driver entry point, and includes
one of the user-mode audio driver messages. For example, when an application calls the Win32
WaveOutOpen function, winmm.dll calls the appropriate user-mode driver's wodMessage entry
point, passing a WODM_OPEN message.

User-Mode Audio Driver Messages
The following table lists the messages that each driver entry point can receive. Messages are
divided into those that the driver is required to support, and those that the driver can optionally
support. Message definitions are contained in mmddk.h.

Entry Points Required Messages Optional Messages

auxMessage AUXDM_GETDEVCAPS
AUXDM_GETNUMDEVS

AUXDM_GETVOLUME
AUXDM_SETVOLUME

User-Mode Audio Driver Messages
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 58 Windows NT DDK

midMessage MIDM_ADDBUFFER
MIDM_CLOSE
MIDM_GETDEVCAPS
MIDM_GETNUMDEVS
MIDM_OPEN
MIDM_RESET
MIDM_START
MIDM_STOP

MIDM_PREPARE
MIDM_UNPREPARE

modMessage MODM_CACHEDRUMPATCHES
MODM_CACHEPATCHES
MODM_CLOSE
MODM_DATA
MODM_GETDEVCAPS
MODM_GETNUMDEVS
MODM_LONGDATA
MODM_OPEN
MODM_RESET

MODM_GETVOLUME
MODM_PREPARE
MODM_SETVOLUME
MODM_UNPREPARE

mxdMessage MXDM_CLOSE
MXDM_GETCONTROLDETAILS
MXDM_GETDEVCAPS
MXDM_GETLINECONTROLS
MXDM_GETLINEINFO
MXDM_GETNUMDEVS
MXDM_OPEN
MXDM_SETCONTROLDETAILS

MXDM_INIT

widMessage WIDM_ADDBUFFER
WIDM_CLOSE
WIDM_GETDEVCAPS
WIDM_GETNUMDEVS
WIDM_GETPOS
WIDM_OPEN
WIDM_RESET
WIDM_START
WIDM_STOP

WIDM_LOWPRIORITY
WIDM_PREPARE
WIDM_UNPREPARE

wodMessage WODM_BREAKLOOP
WODM_CLOSE
WODM_GETDEVCAPS
WODM_GETNUMDEVS
WODM_GETPOS
WODM_OPEN
WODM_PAUSE
WODM_RESET
WODM_RESTART
WODM_WRITE

WODM_GETPITCH
WODM_GETPLAYBACKRATE
WODM_GETVOLUME
WODM_PREPARE
WODM_SETPITCH
WODM_SETPLAYBACKRATE
WODM_SETVOLUME
WODM_UNPREPARE

Note: If you are writing a driver for a waveform device that supports compressed data formats,
your driver must also support some of the Audio Compression Manager (ACM) messages. For
further information, see Providing ACM Support in Device Drivers, which is contained in the Audio
Compression Manager Drivers chapter.

Controlling Waveform and MIDI Devices
The following topics describe the methods used for controlling input and output data transfers for
both waveform and MIDI devices:

• Introduction to Transferring Audio Data
• Transferring Waveform Input Data

Controlling Waveform and MIDI Devices
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 59 Windows NT DDK

• Transferring Waveform Output Data
• Transferring MIDI Input Data
• Transferring MIDI Output Data

Within these topics, the term client is used to refer to any higher-level software that is making
calls into the user-mode driver. This higher-level software could be an application or, more likely,
it could be an intermediate interface called by an application and implemented in winmm.dll.

Introduction to Transferring Audio Data
A primary responsibility of user-mode waveform and MIDI drivers is to pass streams of data
between clients and kernel-mode drivers. For both input and output operations, clients first
allocate data buffers and request the user-mode driver to prepare the buffers for use.

For input operations, the client passes empty buffers to the user-mode driver, which then requests
data from the kernel-mode driver. The kernel-mode driver reads data from the device and passes
it back the user-mode driver, which then fills the buffers. The user-mode driver notifies the client
each time a buffer is filled, so that the client can copy the data from the buffer. The client can
then re-use the buffer or, if all data has been received, it can request the user-mode driver to
remove the buffer's preparation, and then deallocate the buffer.

For output operations, the client fills the buffers with data and begins passing them to the
user-mode driver. The user-mode driver reads the data and passes it to the kernel-mode driver,
which in turn sends the data to the device. The user-mode driver notifies the client when each
buffer has been read. The client can then re-use the buffer or, if all data has been sent, it can
request the user-mode driver to remove the buffer's preparation, and then deallocate the buffer.
(Some MIDI output operations do not use buffers.)

For more details about transferring audio data, see:

• Transferring Waveform Input Data
• Transferring Waveform Output Data
• Transferring MIDI Input Data
• Transferring MIDI Output Data

The algorithms described in these topics are implemented in drvlib.lib and mmdrv.dll.

Transferring Waveform Input Data
For waveform input operations, clients call the user-mode driver's widMessage function. The
user-mode driver should expect the client to first send a WIDM_OPEN message to open a driver
instance. Next, the client allocates memory for one or more data buffers and sends
WIDM_PREPARE messages to prepare the buffers for use. The client then sends a
WIDM_ADDBUFFER message for each buffer, which passes the address of the empty buffer to
the user-mode driver. The user-mode driver keeps a list of available empty buffers.

To start the read operation, the client sends WIDM_START. The user-mode driver then uses a
separate thread to begin requesting data from the kernel-mode driver, typically by calling
ReadFile or ReadFileEx, and filling the empty buffers. Each time a buffer has been filled, the
user-mode driver notifies the client by sending it a WIM_DATA callback message. The client
copies the data from the buffer and re-adds the buffer to the user-mode driver's buffer list by
sending another WIDM_ADDBUFFER message.

When the client has finished the input operation, it sends WIDM_STOP. It can also send
WIDM_RESET, which indicates to the user-mode driver that it should not fill any remaining data
buffers. The client can then send a WIDM_UNPREPARE message for each buffer and deallocate
the buffers. Finally, the driver should expect the client to close the instance by sending
WIDM_CLOSE.

Transferring Waveform Output Data

Transferring Waveform Output Data
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 60 Windows NT DDK

For waveform output operations, clients call the user-mode driver's wodMessage function.
User-mode drivers should expect the client to first send a WODM_OPEN message to open a
driver instance. Next, the client allocates memory for one or more data buffers and sends
WODM_PREPARE messages to prepare the buffers for use.

The client then begins filling the buffers and sending WODM_WRITE messages, which include a
buffer address. The user-mode driver keeps a queue of buffer addresses. When the user-mode
driver starts receiving WODM_WRITE messages, it uses a separate thread to begin sending the
received data to the kernel-mode driver, typically by calling WriteFile or WriteFileEx. Each time
the user-mode driver reads a buffer and sends the data to the kernel-mode driver, it dequeues the
buffer and sends the client a WOM_DONE callback message to notify it that the buffer has been
read. The client can then re-use the buffer by specifying its address with another WODM_WRITE
message.

When the client has finished the output operation, it stops sending WODM_WRITE messages. It
can also send WODM_RESET, which indicates to the user-mode driver that it should not dequeue
any remaining data buffers. The client can then send a WODM_UNPREPARE message for each
buffer and deallocate the buffers. Finally, the driver should expect the client to close the instance
by sending WODM_CLOSE.

Transferring MIDI Input Data
For MIDI input operations, clients call the user-mode driver's midMessage function. The
user-mode driver should expect the client to first send a MIDM_OPEN message to open a driver
instance. Next, the client allocates memory for one or more data buffers and sends
MIDM_PREPARE messages to prepare the buffers for use. The client then sends a
MIDM_ADDBUFFER message for each buffer, which passes the address of the empty buffer to
the user-mode driver. The user-mode driver keeps a queue of available empty buffers.

To start the read operation, the client sends MIDM_START. The user-mode driver then uses a
separate thread to begin requesting data from the kernel-mode driver, typically by calling
ReadFileEx. The user-mode driver receives a buffer of MIDI data that can consist of a
combination of short MIDI messages, or single events, and long MIDI messages, or
system-exclusive events. (For descriptions of MIDI events, see the Standard MIDI Files 1.0
specification.) The user-mode driver must parse the bytes received and do the following:

• Create a time stamp (see Adding Time Stamps, below).
• If the received event is system-exclusive, place the event's bytes in the next available buffer

from the queue of client buffers. If the buffer becomes full, notify the client with a
MIM_LONGDATA callback message. The client can read the buffer and re-use it by sending
another MIDM_ADDBUFFER message.

• If the received event is not system-exclusive, check the message to see if running status (see
Running Status, below) is in effect and if so, add the previous status byte to the event. (All
events passed to clients must include a status byte.) Then pass the event's bytes to the client
with a MIM_DATA callback message.

When the client has finished the input operation, it sends MIDM_STOP. It can also send
MIDM_RESET, which indicates to the user-mode driver that it should not fill any remaining data
buffers. The client can then send a MIDM_UNPREPARE message for each buffer and deallocate
the buffers. Finally, the driver should expect the client to close the instance by sending
MIDM_CLOSE.

Adding Time Stamps
All MIDI events that are returned to a client must include a time stamp. The time stamp
represents the number of milliseconds that have passed since input began. When a client sends
the MIDM_START message, the kernel-mode driver saves the current system time to use as a
reference time. Then each time the kernel-mode driver reads an event, it saves a time stamp
value equal to the difference between the current time and the reference time.

Running Status

Transferring MIDI Input Data
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 61 Windows NT DDK

MIDI events might or might not include a status byte. If the status byte is not included, then the
client is employing running status. This means that the last status byte sent is still in effect and
need not be re-sent. When a user-mode driver receives a MODM_DATA message it checks the
status byte and if no value is present, it does not pass the byte to the kernel-mode driver.

Handling MIDI Thru
Code within winmm.dll supports MIDI thru-ing to the extent that it will connect one MIDI input
driver to one MIDI output driver. You can write a thru-ing driver by responding to
DRVM_ADD_THRU and DRVM_REMOVE_THRU messages within midMessage and
modMessage. For more information, see the discussion of managing MIDI thru-ing and the
description of midiConnect in the Win32 SDK.

Transferring MIDI Output Data
Clients can send output data to user-mode MIDI drivers as either short MIDI messages or long
MIDI messages. A short MIDI message contains a single MIDI event. The event is passed as an
argument to the user-mode driver's modMessage function. Long MIDI messages consist of a
buffer of MIDI events, including MIDI system exclusive events. The buffer address is passed as
an argument to the user-mode driver's modMessage function. (For descriptions of MIDI events,
see the Standard MIDI Files 1.0 specification.)

For MIDI output operations, clients call the user-mode driver's modMessage function. User-mode
drivers should expect the client to first send a MODM_OPEN message to open a driver instance.
If the client will be sending long MIDI messages, it allocates memory for one or more data buffers
and sends MODM_PREPARE messages to prepare the buffers for use. The client then begins
sending either short messages or long messages.

To send a short message, the client sends a MODM_DATA message and includes the message
data. Since MIDI events can be one, two, or three bytes in length, the user-mode driver must
examine the event's status field to determine how many bytes are valid. It then passes the proper
number of bytes to the kernel-mode driver by calling DeviceIoControl.

To send a long message, the client places the message in a buffer and sends a
MODM_LONGDATA message, which includes the buffer's address as an argument. The
user-mode driver does not examine the contents of a long message; it just passes the buffer
contents to the kernel-mode driver by calling DeviceIoControl.

When the user-mode driver begins receiving MODM_DATA and MODM_LONGDATA messages,
it uses a separate thread to begin sending the received data to the kernel-mode driver, typically
by calling DeviceIoControl. After the data has been sent to the kernel-mode driver, the
user-mode driver notifies the client by sending it a MOM_DONE callback message. Clients can
re-use a MODM_LONGDATA buffer by refilling it and including it with a subsequent
MODM_LONGDATA message.

When the client has finished the output operation, it stops sending MODM_DATA and
MODM_LONGDATA messages. It can also send MODM_RESET, which indicates to the
user-mode driver that it should not dequeue any remaining data buffers. The client can then send
a MODM_UNPREPARE message for each buffer and deallocate the buffers. Finally, the driver
should expect the client to close the instance by sending MODM_CLOSE.

MIDI Output Streams
Clients create MIDI streams by using the MIDI stream functions. These functions are defined
within winmm.dll and described in the Win32 SDK. Code in winmm.dll translates the MIDI stream
functions into MODM_DATA and MODM_LONGDATA messages. Therefore, MIDI drivers are not
aware of stream operations. Each MODM_LONGDATA message buffer contains a single MIDI
event that can be passed directly to the driver by calling DeviceIoControl.

Controlling Auxiliary Audio Devices
To control auxiliary audio device operations, clients call the user-mode driver's auxMessage

Controlling Auxiliary Audio Devices
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 62 Windows NT DDK

function. Clients do not need to open or close auxiliary audio devices. The user-mode driver
should expect to receive AUXDM_GETDEVCAPS, AUXDM_GETNUMDEVS,
AUXDM_GETVOLUME, and AUXDM_SETVOLUME messages in any order.

Controlling Mixers
To control mixer operations, clients call the user-mode driver's mxdMessage function. The
user-mode driver should first expect the client to send a MXDM_OPEN message to open a driver
instance. Then the driver can expect to receive MXDM_GETLINEINFO,
MXDM_GETLINECONTROLS, MXDM_GETCONTROLDETAILS, and
MXDM_SETCONTROLDETAILS messages from the opened the instance, until the client sends
MXDM_CLOSE.

Notifying Clients from Audio Drivers
User-mode drivers are responsible for notifying clients upon the completion of various audio
operations. Clients indicate the type of notification, if any, they expect when they open a driver
instance for waveform, MIDI, or mixer operations. (Refer to MIDM_OPEN, MODM_OPEN,
MXDM_OPEN, WIDM_OPEN, and WODM_OPEN messages.) Clients that request notification
can specify any of the following notification targets:

• A callback function
• A window handle
• An event handle
• A thread identifier

Mixer drivers accept only window handles.

User-mode drivers notify clients by calling the DriverCallback function in winmm.dll. This function
delivers a message to the client's notification target. The function also delivers message
parameters, if the target type accepts parameters.

Following are the messages user-mode drivers must send to a client if the client has requested
notification:

Operations Messages

Waveform Input WIM_CLOSE
WIM_DATA
WIM_OPEN

Waveform Output WOM_CLOSE
WOM_DONE
WOM_OPEN

MIDI Input MIM_CLOSE
MIM_DATA
MIM_ERROR
MIM_LONGDATA
MIM_LONGERROR
MIM_MOREDATA
MIM_OPEN

MIDI Output MOM_CLOSE
MOM_DONE
MOM_OPENMOM_POSITIONCB

Mixer MM_MIXM_LINE_CHANGE
MM_MIXM_CONTROL_CHANGE

Using drvlib.lib

Using drvlib.lib
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 63 Windows NT DDK

The user-mode library drvlib.lib provides the following:

• A standard set of user-mode audio driver entry points for waveform, MIDI, mixer, and auxiliary
user-mode drivers.

• A communication path to the device's kernel-mode driver. This path consists of:

• Calling the Windows NT I/O Manager (by means of DeviceIoControl, described in the
Win32 SDK) to send I/O control codes to the kernel-mode driver.

• Calling ReadFileEx and WriteFileEx (described in the Win32 SDK) to pass data between
the user-mode and kernel-mode drivers.

For information on I/O control codes for multimedia drivers, see the Kernel-Mode Drivers
Reference.

• A set of functions for creating and managing a kernel-mode driver as a Windows NT service,
and for easily accessing driver keys within the Windows NT Registry. These functions are
useful for installation and configuration operations, and are listed in Installing and Configuring
your Driver, Using drvlib.lib.

The entry points, support functions, and communications path to the kernel-mode driver are
identical to those provided by the standard audio driver, mmdrv.dll. This library is particularly
useful if your user-mode driver requires only the functionality of mmdrv.dll, with the addition of
customized installation and configuration operations. In such a case, you would create a module
containing a customized DriverProc function, and then link it with drvlib.lib. To initialize the
library, call DrvLibInit when your driver is loaded.

If your driver requires customized audio entry point functions, you might still want to base your
functions on the those contained in drvlib.lib. Sources for drvlib.lib are provided with this DDK, in
the directory path listed in Sample Audio Drivers.

Installing and Configuring your Driver, Using drvlib.lib
User-mode drivers can call functions in drvlib.lib to start the kernel-mode driver and to modify
registry keys. The most commonly used functions include:

DrvLibInit
Initializes drvlib.lib for use with your user-mode driver.

DrvCreateServicesNode
Creates a connection to the Windows NT service control manager and, optionally, creates a
service object for the kernel-mode driver.

DrvConfigureDriver
Opens a connection to the service control manager, creates a kernel-mode driver service for
the specified driver, and loads the kernel-mode driver. This function is typically called when
DriverProc receives a DRV_INSTALL or DRV_CONFIGURE message.

DrvCloseServiceManager
Closes a connection to the service control manager.

DrvCreateDeviceKey
Creates a device subkey under the driver's \Parameters registry key. You should store a
device's configuration parameters under this key.

GetInterruptsAndDma
Examines the registry to determine which interrupt numbers and DMA channels are assigned to
devices.

DrvSetDeviceIdParameter
Assigns a value to a value name in the registry, under a device's \Parameters key. Use this
function to save configuration parameters.

DrvQueryDeviceIdParameter
Reads the value associated with a value name, under a device's \Parameters registry key. Use
this function to read configuration parameters you have stored in the registry.

DrvRemoveDriver

Installing and Configuring your Driver, Using drvlib.lib
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 64 Windows NT DDK

Unloads the kernel-mode driver and marks the kernel-mode driver service for deletion.
Typically called when DriverProc receives a DRV_REMOVE message.

Other installation and configuration functions provided by drvlib.lib are DrvSaveParametersKey,
DrvRestoreParametersKey, DrvDeleteServicesNode, DrvLoadKernelDriver,
DrvUnloadKernelDriver, DrvIsDriverLoaded, DrvNumberOfDevices, and
DrvSetMapperName.

Using synthlib.lib
The synthlib.lib library provides support for internal MIDI synthesizers by converting MIDI output
messages into calls to MIDI FM synthesis functions. The library supports ADLIB and OPL3
synthesizers.

The library contains an alternate modMessage entry point function called modsynthMessage. If
you choose to use this library, link it with your user-mode driver. The driver's module definition file
must contain the following export line:

modMessage = modsynthMessage

Source code for synthlib.lib is provided with this DDK, at the directory path listed in Sample Audio
Drivers.

General Design Guidelines
You most important guideline is to make sure the driver design adheres to the function
descriptions provided by the Win32 SDK. Oftentimes the messages, entry point function
parameters, and return codes described within this chapter correlate to Win32 API functions,
parameters, and return codes described in the Win32 SDK. This chapter provides cross
references to function descriptions in the Win32 SDK.

For MIDI file format descriptions, see the MIDI 1.0 Detailed Specification and Standard MIDI Files
1.0.

Designing a Kernel-Mode Audio Driver
Kernel-mode audio drivers are responsible for accessing audio hardware. They are implemented
as services under the control of the Windows NT service control manager.

The following topics are provided to assist you in designing a kernel-mode audio driver:

• Using soundlib.lib
• Examining sndblst.sys
• Initializing and Configuring a Driver
• Synchronizing Driver Activities
• Supporting Waveform Devices
• Supporting MIDI Devices
• Supporting Mixer Devices
• Supporting Auxiliary Audio Devices

For general information on the structure of kernel-mode drivers, refer to the Kernel-Mode Drivers
Design Guide and Kernel-Mode Drivers Reference in this DDK.

Using soundlib.lib
Kernel-mode audio drivers can use the soundlib.lib library. For waveform, MIDI, auxiliary audio,
and mixer drivers, soundlib.lib provides the following:

Using soundlib.lib
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 65 Windows NT DDK

• Functions that the kernel-mode driver can call for initialization, configuration, and
synchronization activities.

• A set of dispatch functions that the driver can use for handling IRPs and I/O control codes,
which are received from the Windows NT I/O Manager as a result of calls from user-mode
drivers.

For information on IRPs and I/O control codes for multimedia drivers, see the Kernel-Mode
Drivers Reference.

You can use soundlib.lib to make creating a new kernel-mode driver easier. To use soundlib.lib,
link it with your kernel-mode driver. You'll need to include some or all of the following header files:

devices.h mtddmix.h
midi.h ntddwave.h
mixer.h soundcfg.h
mmsystem.h soundlib.h
ntddk.h synthdrv.h
ntddaux.h wave.h
ntddmidi.h

If you include soundlib.h, it includes many, but not all, of the other header files listed.

Source code for soundlib.lib is included with this DDK, at the directory path listed in Sample Audio
Drivers.

Descriptions of the functions and structures provided by soundlib.lib can be found in the Audio
Driver Reference.

Examining sndblst.sys
To illustrate both the construction of a kernel-mode driver and the use of soundlib.lib, the
following sections examine the sample kernel-mode driver sndblst.sys. This driver supports the
Creative Labs Sound Blaster card. It is called from the user-mode driver sndblst.dll, for waveform,
mixer, and auxiliary I/O operations. For MIDI operations, sndblst.sys is called from the standard
audio driver, mmdrv.dll. Source code for sndblst.sys, sndblst.dll, and mmdrv.dll are included with
this DDK, at the directory paths listed in Sample Audio Drivers. When you read the topics within
this section, it is helpful to refer to the source code for sndblst.sys.

Initializing and Configuring a Driver
The following topics examine how the kernel-mode audio driver, sndblst.sys, uses soundlib.lib
functions to perform initialization and configuration operations:

• Examining DriverEntry in sndblst.sys
• Hardware and Driver Initialization
• Handling System Shutdown
• Using I/O Ports
• Using Interrupts
• Using DMA Channels

Examining DriverEntry in sndblst.sys
Like all kernel-mode drivers, sndblst.sys supplies an initialization function called DriverEntry to
handle initialization and configuration operations. Because this code is only executed once, it is
located in the driver's INIT data segment, which is marked as discardable.

For more information about DriverEntry, see DriverEntry for Multimedia Drivers.

Examining DriverEntry in sndblst.sys
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 66 Windows NT DDK

The DriverEntry function for sndblst.sys is located in \src\mmedia\sndblst\driver\init.c. As a first
step, the function initializes the received device object's dispatch table. Drivers using soundlib.lib
must specify SoundDispatch as the dispatcher for the IRP_MJ_CLEANUP, IRP_MJ_CLOSE,
IRP_MJ_CREATE, IRP_MJ_DEVICE_CONTROL, IRP_MJ_READ ,and IRP_MJ_ WRITE control
codes.

The DriverEntry function calls SoundEnumSubkeys in soundlib.lib to locate the registry entry
for each card. For each card found, SoundEnumSubkeys calls back into
SoundCardInstanceInit, also located in init.c. If any callback to SoundCardInstanceInit returns
a failure, SoundEnumSubkeys returns immediately. After SoundEnumSubkeys returns,
DriverEntry calls SoundWriteRegistryDWORD to write each card's initialization status into the
registry.

Note: The DriverEntry function for sndblst.sys searches for multiple cards. Both soundlib.lib and
the registry's multimedia device keys can handle multiple sound cards. However, the current
implementation of sndblst.sys references only one card for I/O operations.

Hardware and Driver Initialization
The DriverEntry function in sndblst.sys calls SoundEnumSubkeys, which in turn calls the
SoundCardInstanceData function in sndblst.sys (defined in \src\mmedia\sndblst\driver\init.c) for
each card described in the registry. For each card, SoundCardInstanceInit is responsible for:

• Saving the registry path
• Allocating device-specific memory
• Finding the bus number and type
• Obtaining configuration parameters
• Creating device objects
• Acquiring hardware resources
• Updating configuration information in the registry.

Saving the Registry Path
When SoundCardInstanceInit is called, it receives a pointer to a registry path. This path is the
full path to a key representing a hardware device, such as
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters\DeviceNumber.
The driver saves this path in device-specific storage for later use with soundlib.lib functions
requiring a registry path as input.

Note: Drivers that do not support multiple hardware devices do not call SoundEnumSubkeys.
Instead, they call SoundSaveRegistryPath to store the registry path for later use with
soundlib.lib functions requiring a registry path as input.

Allocating Device-Specific Memory
Waveform output and MIDI input drivers use interrupts and therefore provide interrupt service
routines (ISRs) and deferred procedure calls (DPCs), as discussed in the Kernel-Mode Drivers
Design Guide. All data that these routines access must be nonpaged. The driver allocates
card-specific memory from nonpaged pool in a GLOBAL_DEVICE_INFO structure and adds the
structure to a linked list.

Finding the Bus Number and Type
Calls to SoundGetBusNumber are used to determine which buses exist. Code in
SoundCardInstanceData checks for ISA, EISA, and Microchannel buses, in that order. The code
assumes that the Sound Blaster card is connected to the first of these buses that it finds.

This code can be modified to provide a more sophisticated bus search.

Different buses do not require different kernel-mode drivers. The Windows NT Hardware

Hardware and Driver Initialization
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 67 Windows NT DDK

Abstraction Layer (HAL) insulates the kernel-mode driver from the bus.

Obtaining Configuration Parameters
Another task of SoundCardInstanceInit is copying device configuration information from the
registry into the device's GLOBAL_DEVICE_INFO structure. Calling RtlQueryRegistryValues is
an easy way to read registry values. The registry path to the card's subkeys are passed to
SoundCardInstanceInit by SoundEnumSubKeys.

For the Sound Blaster card, configuration information stored in the registry includes the card I/O
address, interrupt number, and DMA channel number. Usually, configuration values stored in the
registry are values that can be set on the card. They can also be read-only values. Values that
can be referenced only indirectly, such as those on the Sound Blaster Pro Card that can only be
accessed through a device interrupt, can also be stored in the registry.

Creating Device Objects
SoundCreateDevice is used to create a new sound device object. SoundSaveDeviceName
stores the device name under the registry path
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters\DeviceNumber\Devices
Code in drvlib.lib finds the name there when the user-mode driver opens the device. The
\Devices subkey is volatile and thus isn't written to disk.

Acquiring Hardware Resources
Before a kernel-mode driver can use hardware resources, such as DMA channels, I/O ports, and
interrupts, the resources must be acquired for use. The SoundReportResourceUsage function
determines if specified resources are already assigned to another piece of hardware and, if they
are not, assigns them to the caller.

Updating Configuration Information in the Registry
The SoundWriteRegistryDWORD function is called if it is necessary to update hardware
configuration information stored in the registry.

Handling System Shutdown
For cards with mixer devices, call IoRegisterShutdownNotification so that the
IRP_MJ_SHUTDOWN entry point in the driver object is called when the system is shut down.
Within the shutdown routine, save the mixer settings in the registry.

Using I/O Ports
After sndblst.sys acquires an I/O port address range by calling SoundReportResourceUsage, it
calls SoundMapPortAddress to map the physical address range to a virtual range. The virtual
addresses can be used as input to HAL functions, such as READ_PORT_UCHAR, and
WRITE_PORT_UCHAR, as described in the Kernel-Mode Drivers Reference.

Drivers call also access an address by first calling HalTranslateBusAddress (or a related
function) to map the address, and then calling READ_REGISTER_UCHAR,
WRITE_REGISTER_UCHAR and related functions.

Drivers must not access port addresses directly, or they will not be portable.

Using Interrupts
After sndblst.sys calls SoundReportResourceUsage to acquire an interrupt number, it calls
SoundConnectInterrupt to connect an interrupt service routine to the interrupt. After this call is
made, interrupts can be received.

Using DMA Channels
After sndblst.sys calls SoundReportResourceUsage to acquire a DMA channel, it calls
HalGetAdapter to acquire an adapter object.

Using DMA Channels
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 68 Windows NT DDK

Since sndblst.sys uses auto-initialize DMA for transferring data to and from waveform devices, it
must acquire an adapter object and allocate a buffer for DMA transfers. The buffer must be
noncached and sharable between the driver and the HAL. So, sndblst.sys calls the
SoundGetCommonBuffer function in soundlib.lib, which in turn calls HalGetAdapter to acquire
the adapter object and HalAllocateCommonBuffer to allocate the buffer.
(HalAllocateCommonBuffer is more commonly used for bus-mastering devices.) It also
allocates a memory descriptor list.

Since sndblst.sys requires a second DMA channel without an additional DMA buffer, it calls
HalGetAdapter directly for the second DMA Channel.

Synchronizing Driver Activities
The kernel-mode audio drivers, including the Sound Blaster driver, do not provide a StartIo
function, so they must manage their own queues of I/O Request Packets (IRPs). You must
consider synchronization issues under the following circumstances:

• Opening and closing devices.
• Handling I/O requests, which are sent when a client calls ReadFile, WriteFile, or

DeviceIoControl, and which are received in IRPs.

• Sharing hardware. For instance, MIDI input and output hardware sometimes uses the same I/O
ports as waveform input and output hardware.

• Synchronizing with Deferred Procedure Call routines (DPCs).
• Synchronizing with Interrupt Service Routines (ISRs).

Most of the time, kernel-mode audio drivers execute at PASSIVE_LEVEL priority.
Synchronization can be achieved by:

• Using exclusion routines
• Using spin locks
• Using KeSynchronizeExecution
• Using system worker threads

Using Exclusion Routines
Drivers using soundlib.lib must define an exclusion routine that accepts input messages. The
exclusion routine is called under the following circumstances:

• When a device is opened for writing.
The exclusion routine receives a SoundExcludeOpen message.

• When a device, previously opened for writing, is closed.
The exclusion routine receives a SoundExcludeClose message.

• When a request is directed to a device opened for writing.
The exclusion routine receives a SoundExcludeEnter message.

• When a request to a device opened for writing is complete.
The exclusion routine receives a SoundExcludeLeave message.

• When the caller wants to confirm that the drive is open.
The exclusion routine receives a SoundExcludeQueryOpen message.

The exclusion routine is specified as the ExclusionRoutine member of a SOUND_DEVICE_INIT
structure. Exclusion messages are defined in devices.h. In sndblst.sys, the exclusion routine is
called SoundExcludeRoutine and is contained in the file \src\mmedia\sndblst\driver\init.c. The
function's purpose is to implement mutual exclusion during write operations. For sndblst.sys,
SoundExcludeRoutine does this by calling KeWaitForSingleObject when it receives the
SoundExcludeEnter message and KeReleaseMutex when it receives SoundExcludeLeave.

Using Exclusion Routines
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 69 Windows NT DDK

For information on mutexes, see the Kernel-Mode Drivers Design Guide.

Using Spin Locks
Code that references the same objects that the driver's deferred procedure call (DPC) function
references must be synchronized to avoid simultaneous attempts at referencing the same object.
Drivers can acquire a spin lock at a specified IRQL in order to prevent other processors, or other
code running at a lower IRQL, from simultaneously referencing an object. To synchronize access
to objects referenced by a DPC function, the spin lock is obtained at an IRQL of
DISPATCH_LEVEL.

Spin locks are used within soundlib.lib.

The Kernel-Mode Drivers Design Guide provides an extensive discussion of spin locks.

Using KeSynchronizeExecution
Code that references the same objects that the driver's interrupt service routine (ISR) references
must be synchronized to avoid simultaneous attempts at referencing the same object. Drivers
must use KeSynchronizeExecution to achieve this synchronization. For example, sndblst.sys
provides synchronization routines that set up the hardware for either DSP or mixer operations.
Then a single ISR is provided to handle interrupts. The synchronization routines provided by
sndblst.sys are contained in \src\mmedia\sndblst\driver\hardware.c.

Using System Worker Threads
It is sometimes useful to delegate the completion of some non-time-critical tasks to a system
worker thread. An example is the quiescing of some older, slower sound cards after wave output
has completed.

For wave devices, soundlib.lib queues a worker routine that you specify as the HwStopDMA
member in a WAVE_INFO structure. This routine is called after your DPC completes. (For more
information, see SOUND_DEVICE_INIT.) Code in soundlib.lib calls ExInitializeWorkItem and
ExQueueWorkItem to cause a system worker thread to execute the function pointed to by
HwStopDMA in WAVE_INFO (which, in sndblst.sys, happens to be a function called
HwStopDMA).

Supporting Waveform Devices
Of the types of operations supported by sndblst.sys, waveform I/O operations are the most
complex. Waveform operations are complex because they require the use of both interrupts and
auto-initialize DMA. Functions within soundlib.lib support both interrupt and DMA operations for
waveform devices. To use soundlib.lib for handling waveform devices, you must:

• Within the driver object received by DriverEntry, assign SoundDispatch to be the driver's
main dispatcher for IRP control codes. See "Examining DriverEntry in sndblst.sys."

• Define a SOUND_DEVICE_INIT structure for waveform input, and another for waveform
output. The structures' DispatchRoutine members must be set to the address of
SoundWaveDispatch, which is the waveform dispatch routine within soundlib.lib for
DeviceIoControl messages.

• Define a WAVE_INFO structure for each waveform device that can be in operation
simultaneously. If your device can only support waveform input or output at one time, then only
one WAVE_INFO structure is needed. If input and output can occur simultaneously, two
structures must be defined. In sndblst.sys, only one WAVE_INFO structure is defined because
input and output cannot occur simultaneously.

• Call SoundCreateDevice once for each SOUND_DEVICE_INIT structure you have defined.

Supporting MIDI Devices

Supporting MIDI Devices
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 70 Windows NT DDK

Functions in soundlib.lib provide support for MIDI synthesizers and external MIDI devices. Both
Ad Lib and OPL3 synthesizer types are supported. External MIDI devices are supported in UART
mode. All of these capabilities are utilized by sndblst.sys.

Supporting MIDI Synthesizers
To make use of the synthesizer functions provided in soundlib.lib, do the following:

• Within the driver object received by DriverEntry, assign SoundDispatch to be the driver's
main dispatcher for IRP control codes. See "Examining DriverEntry in sndblst.sys."

• Call the SynthInit function for each card, during hardware and driver initialization.
• Call the SynthCleanup function for each card, just before the driver is unloaded.

Additionally, if your hardware generates an interrupt for timer expiration, your driver must provide
code to connect to the interrupt and to dismiss the interrupt. This interrupt is not handled by
soundlib.lib.

Supporting External MIDI Devices
To use soundlib.lib for handling external MIDI devices, you must:

• Within the driver object received by DriverEntry, assign SoundDispatch to be the driver's
main dispatcher for IRP control codes. See "Examining DriverEntry in sndblst.sys."

• Define a SOUND_DEVICE_INIT structure for MIDI input, and another for MIDI output. The
structures' DispatchRoutine members must be set to the address of SoundMidiDispatch,
which is the MIDI dispatch routine within soundlib.lib for DeviceIoControl messages.

• Define a MIDI_INFO structure. A single MIDI_INFO structure can support both MIDI output and
MIDI input.

• Call SoundCreateDevice once for each SOUND_DEVICE_INIT structure you have defined.

Supporting Mixer Devices
User-mode mixer drivers send IOCTL_MIX_REQUEST_NOTIFY messages to kernel-mode
drivers to request notification of changes to line and control information. If a user-mode driver
uses drvlib.lib, code in drvlib.lib begins continually calling DeviceIoControl, sending
IOCTL_MIX_REQUEST_NOTIFY messages, after MXDM_OPEN is received. (This assumes the
client has stipulated change notification when sending MXDM_OPEN.) Functions are provided in
soundlib.lib to assist kernel-mode drivers in responding to IOCTL_MIX_REQUEST_NOTIFY
messages. Code in soundlib.lib's SoundMixerDispatch queues the IRPs associated with these
notification requests.

Kernel-mode drivers call the SoundMixerChangedItem function to queue information about line
and control changes. This function, in turn, dequeues the queued IRPs, writes changed
information into each IRP structure, and calls IoCompleteRequest to complete the I/O request
and pass the changed information back to drvlib.lib, in user mode.

Kernel-mode drivers call SoundSetLineNotify to register a routine that soundlib.lib calls
whenever the status of a line changes. For wave devices, soundlib.lib calls this routine whenever
the device state should change from inactive to active, or vice versa. The routine typically sets
hardware appropriately and calls SoundMixerChangedItem.

To use soundlib.lib for handling mixer devices, you must:

• Within the driver object received by DriverEntry, assign SoundDispatch to be the driver's
main dispatcher for IRP control codes. See "Examining DriverEntry in sndblst.sys."

• Define a SOUND_DEVICE_INIT structure for each mixer device. Mixer drivers generally
support one device instance per card. The structures' DispatchRoutine members must be set
to the address of SoundMixerDispatch, which is the mixer dispatch routine within soundlib.lib
for DeviceIoControl messages.

• Define a MIXER_INFO structure.

Supporting Mixer Devices
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 71 Windows NT DDK

• Call SoundCreateDevice once for each SOUND_DEVICE_INIT structure you have defined.
• Assign the address of the mixer device's LOCAL_DEVICE_INFO structure to the MixerDevice

member of every other device's LOCAL_DEVICE_INFO structure.

Mixer drivers should save their settings in the registry before system shutdown. To register for
shutdown notification, call IoRegisterShutdownNotification. Drivers can save mixer settings in
the registry in any format, but the most efficient registry data type for saving the settings is
REG_BINARY. When the driver initializes, it can use either the stored settings or default settings.

Supporting Auxiliary Audio Devices
Kernel-mode drivers that support auxiliary audio devices can use the auxiliary audio message
dispatcher, SoundAuxDispatch, provided by soundlib.lib. If you use soundlib.lib, the amount of
customized code a driver needs to provide is minimal. If the hardware provides a mixer, then
soundlib.lib calls the mixer's HwSetControlData and HwGetControlData functions to control
volume (see MIXER_INFO). If the hardware does not provide mixer hardware, the driver needs to
include a HwSetVolume function for the auxiliary audio device, to control volume (see
SOUND_DEVICE_INIT). A DevCapsRoutine is the only other function you need to provide (see
SOUND_DEVICE_INIT).

To use soundlib.lib for handling auxiliary audio devices, you must:

• Within the driver object received by DriverEntry, assign SoundDispatch to be the driver's
main dispatcher for IRP control codes. See "Examining_DriverEntry in sndblst.sys."

• Define a SOUND_DEVICE_INIT structure. The structures' DispatchRoutine members must be
set to the address of SoundAuxDispatch, which is the auxiliary audio dispatch routine within
soundlib.lib for DeviceIoControl messages.

• Call SoundCreateDevice once for each SOUND_DEVICE_INIT structure you have defined.

Audio Driver Reference
This section describes the functions, messages, structures, and types used by audio drivers.

Topics for user-mode drivers include:

• Entry Points, User-Mode Audio Drivers
• Messages, User-Mode Audio Drivers
• Structures, User-Mode Audio Drivers
• Functions and Macros, drvlib.lib
• Structures and Types, drvlib.lib

Topics for kernel-mode drivers include:

• Functions, soundlib.lib
• Structures and Types, soundlib.lib

Entry Points, User-Mode Audio Drivers
This section describes the entry point functions that user-mode audio drivers must provide.

auxMessage
DWORD APIENTRY

 auxMessage (
 UINT uDeviceId,
 UINT uMsg,

auxMessage
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 72 Windows NT DDK

 DWORD dwUser,
 DWORD dwParam1,
 DWORD dwParam2
);

The auxMessage function is one of the user-mode audio driver entry points. It is the entry point
for user-mode auxiliary audio drivers.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

Specifies one of the user-mode audio driver messages.
dwUser

Not used.
dwParam1

Specifies the first message parameter. Dependent on message type.
dwParam2

Specifies the second message parameter. Dependent on message type.

Return Value
The auxMessage function returns a value that is dependent upon the message. If the received
message is not recognized, the function returns MMSYSERR_NOTSUPPORTED.

midMessage
DWORD APIENTRY

 midMessage (
 UINT uDeviceId,
 UINT uMsg,
 DWORD dwUser,
 DWORD dwParam1,
 DWORD dwParam2
);

The midMessage function is one of the user-mode audio driver entry points. It is the entry point
for user-mode MIDI input drivers.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

Specifies one of the user-mode audio driver messages.
dwUser

Specifies a device instance identifier. For the MIDM_OPEN message, this is an output
parameter. The driver creates the instance identifier and returns it in the address specified as
the argument. For all other messages, this is an input parameter. The argument is the instance
identifier.

dwParam1
Specifies the first message parameter. Dependent on message type.

dwParam2
Specifies the second message parameter. Dependent on message type.

Return Value
The midMessage function returns a value that is dependent upon the message. If the received
message is not recognized, the function returns MMSYSERR_NOTSUPPORTED.

midMessage
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 73 Windows NT DDK

Comments
You can use dwUser in any manner you wish. Drivers that can support multiple clients return a
different value for each MIDM_OPEN message, in order to keep track of which subsequent
messages are being sent by which client.

modMessage
DWORD APIENTRY

 modMessage (
 UINT uDeviceId,
 UINT uMsg,
 DWORD dwUser,
 DWORD dwParam1,
 DWORD dwParam2
);

The modMessage function is one of the user-mode audio driver entry points. It is the entry point
for user-mode MIDI output drivers.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

Specifies one of the user-mode audio driver messages.
dwUser

Specifies a device instance identifier. For the MODM_OPEN message, this is an output
parameter. The driver creates the instance identifier and returns it in the address specified as
the argument. For all other messages, this is an input parameter. The argument is the instance
identifier.

dwParam1
Specifies the first message parameter. Dependent on message type.

dwParam2
Specifies the second message parameter. Dependent on message type.

Return Value
The modMessage function returns a value that is dependent upon the message. If the received
message is not recognized, the function returns MMSYSERR_NOTSUPPORTED.

Comments
You can use dwUser in any manner you wish. Drivers that can support multiple clients return a
different value for each MODM_OPEN message, in order to keep track of which subsequent
messages are being sent by which client.

mxdMessage
DWORD APIENTRY

 mxdMessage (
 UINT uDeviceId,
 UINT uMsg,
 DWORD dwUser,
 DWORD dwParam1,
 DWORD dwParam2
);

The mxdMessage function is one of the user-mode audio driver entry points. It is the entry point
for user-mode mixer drivers.

mxdMessage
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 74 Windows NT DDK

Parameters
uDeviceId

Device identifier (0, 1, 2, etc.) for the target device.
uMsg

Specifies one of the user-mode audio driver messages.
dwUser

Specifies a device instance identifier. For the MXDM_OPEN message, this is an output
parameter. The driver creates the instance identifier and returns it in the address specified as
the argument. For all other messages, this is an input parameter. The argument is the instance
identifier.

dwParam1
Specifies the first message parameter. Dependent on message type.

dwParam2
Specifies the second message parameter. Dependent on message type.

Return Value
The mxdMessage function returns a value that is dependent upon the message. If the received
message is not recognized, the function returns MMSYSERR_NOTSUPPORTED.

Comments
You can use dwUser in any manner you wish. Drivers that can support multiple clients return a
different value for each MXDM_OPEN message, in order to keep track of which subsequent
messages are being sent by which client.

widMessage
DWORD APIENTRY

 widMessage (
 UINT uDeviceId,
 UINT uMsg,
 DWORD dwUser,
 DWORD dwParam1,
 DWORD dwParam2
);

The widMessage function is one of the user-mode audio driver entry points. It the entry point for
user-mode waveform input drivers.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

Specifies one of the user-mode audio driver messages.
dwUser

Specifies a device instance identifier. For the WIDM_OPEN message, this is an output
parameter. The driver creates the instance identifier and returns it in the address specified as
the argument. For all other messages, this is an input parameter. The argument is the instance
identifier.

dwParam1
Specifies the first message parameter. Dependent on message type.

dwParam2
Specifies the second message parameter. Dependent on message type.

Return Value
The widMessage function returns a value that is dependent upon the message. If the received
message is not recognized, the function returns MMSYSERR_NOTSUPPORTED.

widMessage
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 75 Windows NT DDK

Comments
You can use dwUser in any manner you wish. Drivers that can support multiple clients return a
different value for each WIDM_OPEN message, in order to keep track of which subsequent
messages are being sent by which client.

wodMessage
DWORD APIENTRY

 wodMessage (
 UINT uDeviceId,
 UINT uMsg,
 DWORD dwUser,
 DWORD dwParam1,
 DWORD dwParam2
);

The wodMessage function is one of the user-mode audio driver entry points. It the entry point for
user-mode waveform output drivers.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

Specifies one of the user-mode audio driver messages.
dwUser

Specifies a device instance identifier. For the WODM_OPEN message, this is an output
parameter. The driver creates the instance identifier and returns it in the address specified as
the argument. For all other messages, this is an input parameter. The argument is the instance
identifier.

dwParam1
Specifies the first message parameter. Dependent on message type.

dwParam2
Specifies the second message parameter. Dependent on message type.

Return Value
The wodMessage function returns a value that is dependent upon the message. If the received
message is not recognized, the function returns MMSYSERR_NOTSUPPORTED.

Comments
You can use dwUser in any manner you wish. Drivers that can support multiple clients return a
different value for each WODM_OPEN message, in order to keep track of which subsequent
messages are being sent by which client.

Messages, User-Mode Audio Drivers
This section describes the messages, listed in alphabetical order, that are received by user-mode
audio drivers.

AUXDM_GETDEVCAPS
The AUXDM_GETDEVCAPS message requests an auxiliary audio driver to return the capabilities
of the specified auxiliary audio device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.

AUXDM_GETDEVCAPS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 76 Windows NT DDK

uMsg
AUXDM_GETDEVCAPS

dwUser
Not used.

dwParam1
Pointer to an empty AUXCAPS structure. This structure is used to return the capabilities of the
device. (The AUXCAPS structure is described in the Win32 SDK.)

dwParam2
Size of the AUXCAPS structure in bytes.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h.

Comments
A client sends the AUXDM_GETDEVCAPS message by calling the user-mode driver's
auxMessage entry point, passing the specified parameters.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_AUX_GET_CAPABILITIES control code.

The user-mode driver fills the AUXCAPS structure.

AUXDM_GETNUMDEVS
The AUXDM_GETNUMDEVS message requests an auxiliary audio driver to return the number of
auxiliary audio device instances that it supports.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

AUXDM_GETNUMDEVS
dwUser

Not used.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver returns the number of auxiliary audio device instances it supports.

Comments
A client sends the AUXDM_GETNUMDEVS message by calling the user-mode driver's
auxMessage entry point, passing the specified parameters.

The driver should return the number of logical auxiliary audio devices that can be supported.
Typically, for each physical device, a kernel-mode driver can support one or more logical devices
of various types. For example, for each Creative Labs Sound Blaster card, there are MIDI,
waveform input, mixer, and auxiliary audio devices. Kernel-mode drivers store logical device
names and types in the registry under the path
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters\DeviceNumber\Devices
To correctly return the number of logical devices, the user-mode driver should examine the
\Devices subkey for each of the driver's \DeviceNumber keys, searching for logical devices of the
desired type. (Code in drvlib.lib provides this capability.)

AUXDM_GETVOLUME
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 77 Windows NT DDK

The AUXDM_GETVOLUME message requests a user-mode driver to return the current volume
level setting for the specified auxiliary audio device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

AUXDM_GETVOLUME
dwUser

Not used.
dwParam1

Pointer to a DWORD location to receive the volume setting.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h.

Comments
A client sends the AUXDM_GETVOLUME message by calling the user-mode driver's
auxMessage entry point, passing the specified parameters.

Support for this message by user-mode drivers is optional. If the driver supports
AUXDM_SETVOLUME, it must support AUXDM_GETVOLUME.

The volume value is returned in the DWORD pointed to by dwParam1 as follows:

Channel Portion of dwParam1 Used
Left channel Low word
Right channel High word
Single channel Low word

A value of zero is silence, and a value of 0xFFFF is full volume.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_AUX_GET_VOLUME control code.

AUXDM_SETVOLUME
The AUXDM_SETVOLUME message requests a user-mode driver to set the volume level for the
specified auxiliary audio device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

AUXDM_SETVOLUME
dwUser

Not used.
dwParam1

A DWORD containing the volume setting.
dwParam2

Not used.

Return Value

AUXDM_SETVOLUME
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 78 Windows NT DDK

The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h.

Comments
A client sends the AUXDM_SETVOLUME message by calling the user-mode driver's
auxMessage entry point, passing the specified parameters.

Support for this message by user-mode drivers is optional. If the driver supports
AUXDM_SETVOLUME, it must support AUXDM_GETVOLUME.

The volume value is specified by dwParam1 as follows.

Channel Portion of dwParam1 Used
Left channel Low word
Right channel High word
Single channel Low word

A value of zero is silence, and a value of 0xFFFF is full volume.

The kernel-mode driver might not support the full 16 bits of volume control and can truncate the
lower bits. However, the original value requested with AUXDM_SETVOLUME should be returned
with AUXDM_GETVOLUME.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_AUX_SET_VOLUME control code.

MIDM_ADDBUFFER
The MIDM_ADDBUFFER message requests a user-mode MIDI input driver to add an empty input
buffer to its input buffer queue.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

AUXDM_SETVOLUME
dwUser

Device instance identifier.
dwParam1

Pointer to a MIDIHDR structure identifying the buffer. (The MIDIHDR structure is described in
the Win32 SDK.)

dwParam2
Size of the MIDIHDR structure in bytes.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See
midiInAddBuffer return values in the Win32 SDK.

Comments
A client sends the AUXDM_SETVOLUME message by calling the user-mode driver's
midMessage entry point, passing the specified parameters.

If the MHDR_PREPARED flag is not set in the dwFlags member of the MIDIHDR structure, the
driver should return MIDIERR_UNPREPARED. If the flag is set, the driver should:

• Clear the MHDR_DONE flag.
• Set the MHDR_INQUEUE flag.
• Place the empty buffer in its input queue.

MIDM_ADDBUFFER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 79 Windows NT DDK

• Return control to the client with a return value of MMSYSERR_NOERROR.

Only system-exclusive events (long messages) should be placed in the buffer. Other MIDI events
(short messages) should be passed to the client with a MIM_DATA callback message.

The user-mode driver starts recording when it receives a MIDM_START message.

For additional information, see Transferring MIDI Input Data.

MIDM_CLOSE
The MIDM_CLOSE message requests a MIDI input driver to close a specified device instance
that was previously opened with a MIDM_OPEN message.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MIDM_CLOSE
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See midiInClose
return values in the Win32 SDK.

Comments
A client sends the MIDM_CLOSE message by calling the user-mode driver's midMessage entry
point, passing the specified parameters.

If the driver has not filled and returned all of the buffers received with MIDM_ADDBUFFER
messages, it should not close the instance and should instead return MIDIERR_STILLPLAYING.

After the driver closes the device instance it should send a MIM_CLOSE callback message to the
client.

For more information about closing a device instance, see Transferring MIDI Input Data.

MIDM_GETDEVCAPS
The MIDM_GETDEVCAPS message requests a MIDI input driver to return the capabilities of a
specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MIDM_GETDEVCAPS
dwUser

Device instance identifier.
dwParam1

Pointer to a MIDIINCAPS structure. (The MIDIINCAPS structure is described in the Win32
SDK.)

dwParam2

MIDM_GETDEVCAPS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 80 Windows NT DDK

Size of the MIDIINCAPS structure in bytes.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See
midiInGetDevCaps return values in the Win32 SDK.

Comments
A client sends the MIDM_GETDEVCAPS message by calling the user-mode driver's
midMessage entry point, passing the specified parameters.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_MIDI_GET_CAPABILITIES control code.

The user-mode driver fills the MIDIINCAPS structure.

MIDM_GETNUMDEVS
The MIDM_GETNUMDEVS message requests a MIDI input driver to return the number of device
instances that it supports.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MIDM_GETNUMDEVS
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver returns the number of MIDI input device instances it supports.

Comments
A client sends the MIDM_GETNUMDEVS message by calling the user-mode driver's
midMessage entry point, passing the specified parameters.

The driver should return the number of logical MIDI input devices that can be supported.
Typically, for each physical device, a kernel-mode driver can support one or more logical devices
of various types. For example, for each Creative Labs Sound Blaster card, there are MIDI,
waveform, mixer, and auxiliary audio devices. Kernel-mode drivers store logical device names
and types in the registry under the path
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters\DeviceNumber\Devices
To correctly return the number of logical devices, the user-mode driver should examine the
\Devices subkey for each of the driver's \DeviceNumber keys, searching for logical devices of the
desired type. (Code in drvlib.lib provides this capability.)

MIDM_OPEN
The MIDM_OPEN message is sent to a MIDI input driver to request it to open an instance of a
specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.

MIDM_OPEN
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 81 Windows NT DDK

uMsg
MIDM_OPEN

dwUser
Pointer to location to receive device instance identifier.

dwParam1
Pointer to a MIDIOPENDESC structure, containing the client's device handle, notification
target, and instance ID.

dwParam2
Contains flags. The following flags are defined.

Flag Definition
CALLBACK_WINDOW Indicates the dwCallback member of

MIDIOPENDESC is a window handle.
CALLBACK_FUNCTION Indicates the dwCallback member of

MIDIOPENDESC is the address of a
callback function.

CALLBACK_TASK Indicates the dwCallback member of
MIDIOPENDESC is a task handle.

MIDI_IO_STATUS Indicates the client wants to receive
MIM_MOREDATA callback messages.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See midiInOpen
return values in the Win32 SDK.

Comments
A client sends the MIDM_OPEN message by calling the user-mode driver's midMessage entry
point, passing the specified parameters.

Typically, user-mode drivers connect to kernel-mode drivers by calling CreateFile, specifying the
MS-DOS device name of one of the kernel-mode driver's devices.

The driver assigns a device instance identifier and returns it in the location pointed to by dwUser.
The driver can expect to receive this value as the dwUser input argument to all other
midMessage messages.

The driver determines the number of clients it allows to use a particular device. If a device is
opened by the maximum number of clients, it returns MMSYSERR_ALLOCATED for subsequent
open requests.

If the open operation succeeds, the driver should send the client a MIM_OPEN message by
calling the DriverCallback function.

For additional information, see Transferring MIDI Input Data.

MIDM_PREPARE
The MIDM_PREPARE message requests a MIDI input driver to prepare a system-exclusive data
buffer for input.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MIDM_PREPARE
dwUser

Device instance identifier.
dwParam1

MIDM_PREPARE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 82 Windows NT DDK

Pointer to a MIDIHDR structure identifying the buffer. (The MIDIHDR structure is described in
the Win32 SDK.)

dwParam2
Size of the MIDIHDR structure.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See
midiInPrepareHeader return values in the Win32 SDK.

Comments
A client sends the MIDM_PREPARE message by calling the user-mode driver's midMessage
entry point, passing the specified parameters.

Support for this message by user-mode drivers is optional. If the driver supports
MIDM_PREPARE, it must also support MIDM_UNPREPARE.

If the driver returns MMSYSERR_NOTSUPPORTED, winmm.dll prepares the buffer for use. For
most drivers, this behavior is sufficient. If the driver does perform buffer preparation, it must set
MHDR_PREPARED in the dwFlags member of MIDIHDR and return MMSYSERR_NOERROR.

For additional information, see Transferring MIDI Input Data.

MIDM_RESET
The MIDM_RESET message requests a MIDI input driver to stop recording and return all buffers
in the input queue to the client.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MIDM_RESET
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See midiInReset
return values in the Win32 SDK.

Comments
A client sends the MIDM_RESET message by calling the user-mode driver's midMessage entry
point, passing the specified parameters.

Typically, the user-mode driver stops recording by calling DeviceIoControl, sending the
kernel-mode driver an IOCTL_MIDI_SET_STATE control code.

For each buffer remaining in the driver's input queue (see MIDM_ADDBUFFER), the driver
should set MHDR_DONE and clear MHDR_INQUEUE in the dwFlags member of the buffer's
MIDIHDR structure, and also set the structure's dwBytesRecorded member. Finally, a
MOM_DONE callback message should be sent for each buffer.

For additional information, see Transferring MIDI Input Data.

MIDM_START
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 83 Windows NT DDK

The MIDM_START message requests a MIDI input driver to begin recording.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MIDM_START
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See midiInStart
return values in the Win32 SDK.

Comments
A client sends the MIDM_START message by calling the user-mode driver's midMessage entry
point, passing the specified parameters.

This message resets the time stamp to zero. If the message is received after input has been
started, the driver should return MMSYSERR_NOERROR.

Typically, the user-mode driver starts recording by calling ReadFileEx, to fill internal buffers with
data returned by the kernel-mode driver, and by calling DeviceIoControl, to send the
kernel-mode driver an IOCTL_MIDI_SET_STATE control code. When the kernel-mode driver
returns a filled buffer, the user-mode driver should read the buffer data to differentiate short MIDI
messages from long MIDI messages. The user-mode driver returns each short message to the
client by means of a MIM_DATA callback message. It should copy long messages into the
user-specified input buffers (see MIDM_ADDBUFFER) and, when a buffer is full, do the following:

• Set the dwBytesRecorded member in the buffer's MIDIHDR structure.
• Set the buffer's MHDR_DONE flag.
• Clear the buffer's MHDR_INQUEUE flag.
• Send a MIM_LONGDATA callback message to the client.

If the driver receives long messages with no buffers in its input queue, it should ignore the
messages without notifying the client.

Recording should continue until the client sends MIDM_STOP or MIDM_RESET.

For additional information, see Transferring MIDI Input Data.

MIDM_STOP
The MIDM_STOP message requests a MIDI input driver to stop recording.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MIDM_STOP
dwUser

Device instance identifier.

MIDM_STOP
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 84 Windows NT DDK

dwParam1
Not used.

dwParam2
Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See midiInStop
return values in the Win32 SDK.

Comments
A client sends the MIDM_STOP message by calling the user-mode driver's midMessage entry
point, passing the specified parameters.

If a buffer in the input queue (see MIDM_ADDBUFFER) has been partially filled, the driver should
treat it as a full buffer and return it to the client (see MIDM_START). Empty buffers should remain
in the queue.

While recording is stopped, the driver should maintain the current MIDI status byte for events
using running status and the parsing state for multibyte events. If the driver receives a
subsequent MIDM_START message, it should be able to resume recording from the point at
which it was stopped.

If this message is received and recording is already stopped, the driver should return
MMSYSERR_NOERROR.

Typically, the user-mode driver stops recording by calling DeviceIoControl, sending the
kernel-mode driver an IOCTL_MIDI_SET_STATE control code.

For additional information, see Transferring MIDI Input Data.

MIDM_UNPREPARE
The MIDM_UNPREPARE message requests a MIDI input driver to remove the buffer preparation
that was performed in response to a MIDM_PREPARE message.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MIDM_UNPREPARE
dwUser

Device instance identifier.
dwParam1

Specifies a pointer to MIDIHDR identifying the data buffer. (The MIDIHDR structure is
described in the Win32 SDK.)

dwParam2
Specifies the size of MIDIHDR in bytes.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See
midiInUnprepareHeader return values in the Win32 SDK.

Comments
A client sends the MIDM_UNPREPARE message by calling the user-mode driver's midMessage
entry point, passing the specified parameters.

Support for this message by user-mode drivers is optional. If the driver supports

MIDM_UNPREPARE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 85 Windows NT DDK

MIDM_PREPARE, it must also support MIDM_UNPREPARE.

If the driver returns MMSYSERR_NOTSUPPORTED, winmm.dll removes the buffer preparation.
For most drivers, this behavior is sufficient. If the driver does support MIDM_UNPREPARE, it
must clear MHDR_PREPARED in the dwFlags member of MIDIHDR and return
MMSYSERR_NOERROR.

For additional information, see Transferring MIDI Input Data.

MIM_CLOSE
The MIM_CLOSE callback message notifies a client that a user-mode driver has finished
processing a MIDM_CLOSE message.

Parameters
dwMsg

MIM_CLOSE
dwParam1

NULL
dwParam2

NULL

Comments
A user-mode MIDI input driver sends a MIM_CLOSE message to its client, by means of a
callback, when the driver finishes processing a MIDM_CLOSE message. The driver sends the
message to the client by calling DriverCallback, passing the specified parameters.

The driver sends the MIM_CLOSE message only if the client has previously specified a
notification target with a MIDM_OPEN message.

Win32 SDK documentation states that clients receive an MM_MIM_CLOSE message if the
notification target is a window handle. MIM_CLOSE and MM_MIM_CLOSE are equivalent.

For additional information, see Notifying Clients from Audio Drivers and Transferring MIDI Input
Data.

MIM_DATA
The MIM_DATA callback message notifies a client that a user-mode driver has received a MIDI
short message.

Parameters
dwMsg

MIM_DATA
dwParam1

MIDI short message contents (one to three bytes).
dwParam2

Time stamp. Number of milliseconds since MIDM_START was received.

Comments
A user-mode MIDI input driver sends a MIM_DATA message to its client, by means of a callback,
when the driver has received a MIDI short message. The driver sends the message to the client
by calling DriverCallback, passing the specified parameters.

The driver sends the MIM_DATA message only if the client has previously specified a notification
target with a MIDM_OPEN message.

If the driver detects that the message is invalid, it should send MIM_ERROR instead of
MIM_DATA.

MIM_DATA
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 86 Windows NT DDK

Win32 SDK documentation states that clients receive an MM_MIM_DATA message if the
notification target is a window handle. MIM_DATA and MM_MIM_DATA are equivalent.

For additional information, see Notifying Clients from Audio Drivers and Transferring MIDI Input
Data.

MIM_ERROR
The MIM_ERROR callback message notifies a client that a user-mode driver has received an
invalid MIDI short message.

Parameters
dwMsg

MIM_ERROR
dwParam1

Invalid MIDI short message contents (one to three bytes).
dwParam2

Time stamp. Number of milliseconds since MIDM_START was received.

Comments
A user-mode MIDI input driver sends a MIM_ERROR message to its client, by means of a
callback, when the driver has received an invalid MIDI short message. The driver sends the
message to the client by calling DriverCallback, passing the specified parameters.

The driver sends the MIM_ERROR message only if the client has previously specified a
notification target with a MIDM_OPEN message.

Win32 SDK documentation states that clients receive a MM_MIM_ERROR message if the
notification target is a window handle. MIM_ERROR and MM_MIM_ERROR are equivalent.

For more information, see Notifying Clients from Audio Drivers and Transferring MIDI Input Data.

MIM_LONGDATA
The MIM_LONGDATA callback message notifies a client that a user-mode driver has received a
MIDI system-exclusive (long) message.

Parameters
dwMsg

MIM_LONGDATA
dwParam1

Address of a MIDIHDR structure identifying a buffer containing the long message. (MIDIHDR is
defined in the Win32 SDK.)

dwParam2
Time stamp. Number of milliseconds since MIDM_START was received.

Comments
A user-mode MIDI input driver sends a MIM_LONGDATA message to its client, by means of a
callback, when the driver has received a MIDI system-exclusive (long) message. The driver sends
the message to the client by calling DriverCallback, passing the specified parameters.

The driver sends the MIM_LONGDATA message only if the client has previously specified a
notification target with a MIDM_OPEN message.

If the driver detects that the message is invalid, it should send MIM_LONGERROR instead of
MIM_LONGDATA.

Win32 SDK documentation states that clients receive a MM_MIM_LONGDATA message if the
notification target is a window handle. MIM_LONGDATA and MM_MIM_LONGDATA are
equivalent.

MIM_LONGDATA
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 87 Windows NT DDK

For additional information, see Notifying Clients from Audio Drivers and Transferring MIDI Input
Data.

MIM_LONGERROR
The MIM_LONGERROR callback message notifies a client that a user-mode driver has received
an invalid MIDI system-exclusive (long) message.

Parameters
dwMsg

MIM_LONGERROR
dwParam1

Address of a MIDIHDR structure identifying a buffer containing the invalid long message.
(MIDIHDR is defined in the Win32 SDK.)

dwParam2
Time stamp. Number of milliseconds since MIDM_START was received.

Comments
A user-mode MIDI input driver sends a MIM_LONGERROR message to its client, by means of a
callback, when the driver has received an invalid MIDI system-exclusive (long) message. The
driver sends the message to the client by calling DriverCallback, passing the specified
parameters.

The driver sends the MIM_LONGERROR message only if the client has previously specified a
notification target with a MIDM_OPEN message.

When a driver detects an invalid message long message, it should send MIM_LONGERROR
instead of MIM_LONGDATA.

Win32 SDK documentation states that clients receive a MM_MIM_LONGERROR message if the
notification target is a window handle. MIM_LONGERROR and MM_MIM_LONGERROR are
equivalent.

For additional information, see Notifying Clients from Audio Drivers and Transferring MIDI Input
Data.

MIM_MOREDATA
The MIM_MOREDATA callback message notifies a client that a user-mode driver has received a
MIDI short message, and the client is not processing MIM_DATA messages fast enough to keep
up with the driver.

Parameters
dwMsg

MIM_MOREDATA
dwParam1

MIDI short message contents (one to three bytes).
dwParam2

Time stamp. Number of milliseconds since MIDM_START was received.

Comments
A user-mode MIDI input driver sends a MIM_MOREDATA message to its client, by means of a
callback, when the driver has received a MIDI short message and the client is not processing
MIM_DATA messages fast enough to keep up with the driver. The driver sends the message to
the client by calling DriverCallback, passing the specified parameters.

The driver sends the MIM_MOREDATA message only if the client has previously specified a
notification target with a MIDM_OPEN message, and only if the MIDI_IO_STATUS flag was
included with the MIDM_OPEN message.

MIM_MOREDATA
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 88 Windows NT DDK

Currently, mmdrv.dll and drvlib.lib do not send MIM_MOREDATA messages.

If the driver detects that the message is invalid, it should send MIM_ERROR instead of
MIM_MOREDATA.

Win32 SDK documentation states that clients receive a MM_MIM_MOREDATA message if the
notification target is a window handle. MIM_MOREDATA and MM_MIM_MOREDATA are
equivalent.

For additional information, see Notifying Clients from Audio Drivers and Transferring MIDI Input
Data.

MIM_OPEN
The MIM_OPEN callback message notifies a client that a user-mode driver has finished
processing a MIDM_OPEN message.

Parameters
dwMsg

MIM_OPEN
dwParam1

NULL
dwParam2

NULL

Comments
A user-mode MIDI input driver sends a MIM_OPEN message to its client, by means of a callback,
when the driver finishes processing a MIDM_OPEN message. The driver sends the message to
the client by calling DriverCallback, passing the specified parameters.

The driver sends the MIM_OPEN message only if the client has specified a notification target with
the MIDM_OPEN message.

Win32 SDK documentation states that clients receive an MM_MIM_OPEN message if the
notification target is a window handle. MIM_OPEN and MM_MIM_OPEN are equivalent.

For additional information, see Notifying Clients from Audio Drivers and Transferring MIDI Input
Data.

MM_MIXM_CONTROL_CHANGE
The MM_MIXM_CONTROL_CHANGE callback message notifies a client that the value of a mixer
control item has changed.

Parameters
dwMsg

MM_MIXM_CONTROL_CHANGE
dwParam1

Control ID. Must match control ID value returned to the client in response to an
MXDM_GETLINECONTROLS message.

dwParam2
NULL

Comments
A user-mode mixer driver sends an MM_MIXM_CONTROL_CHANGE message to its client, by
means of a callback, when the value of a mixer control item has changed. The driver sends the
message to the client by calling DriverCallback, passing the specified parameters.

The driver sends the MM_MIXM_CONTROL_CHANGE message only if the client has specified a
notification target with the MXDM_OPEN message.

MM_MIXM_CONTROL_CHANGE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 89 Windows NT DDK

For kernel-mode drivers using soundlib.lib, this value is stored in a MIXER_DATA_ITEM structure
and passed to the user-mode driver upon receipt of an IOCTL_MIX_REQUEST_NOTIFY control
code.

For additional information, see Notifying Clients from Audio Drivers.

MM_MIXM_LINE_CHANGE
The MM_MIXM_LINE_CHANGE callback message notifies a client that the value of a mixer line
item has changed.

Parameters
dwMsg

MM_MIXM_LINE_CHANGE
dwParam1

Line ID. Must match line ID value returned to the client in response to an
MXDM_GETLINEINFO message.

dwParam2
NULL

Comments
A user-mode mixer driver sends an MM_MIXM_LINE_CHANGE message to its client, by means
of a callback, when the value of a mixer line item has changed. The driver sends the message to
the client by calling DriverCallback, passing the specified parameters.

The driver sends the MM_MIXM_LINE_CHANGE message only if the client has specified a
notification target with the MXDM_OPEN message.

For kernel-mode drivers using soundlib.lib, this value is stored in a MIXER_DATA_ITEM structure
and passed to the user-mode driver upon receipt of an IOCTL_MIX_REQUEST_NOTIFY control
code.

For additional information, see Notifying Clients from Audio Drivers.

MODM_CACHEDRUMPATCHES
The MODM_CACHEDRUMPATCHES message requests a MIDI output driver to load and cache
a specified set of key-based percussion patches.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MODM_CACHEDRUMPATCHES
dwUser

Device instance identifier.
dwParam1

Pointer to an array of type KEYARRAY, which is described in the Win32 SDK.
dwParam2

Contains a DWORD value, defined as follows:
Low word Flag values. (For flag descriptions, see midiOutCacheDrumPatches in

the Win32 SDK.)
High word Drum patch number.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See

MODM_CACHEDRUMPATCHES
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 90 Windows NT DDK

midiOutCacheDrumPatches return values in the Win32 SDK.

Comments
A client sends the MODM_CACHEDRUMPATCHES message by calling the user-mode driver's
modMessage entry point, passing the specified parameters.

Typically, the user-mode driver requests the kernel-mode driver to cache the patches by calling
DeviceIoControl with an IOCTL_MIDI_CACHE_DRUM_PATCHES control code.

MODM_CACHEPATCHES
The MODM_CACHEPATCHES message requests a MIDI output driver to load and cache a
specified bank of patches.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MODM_CACHEPATCHES
dwUser

Device instance identifier.
dwParam1

Pointer to an array of type PATCHARRAY, which is described in the Win32 SDK.
dwParam2

Contains a DWORD value, defined as follows:
Low word Flag values. (For flag descriptions, see midiOutCachePatches in the

Win32 SDK.)
High word Patch bank number. Zero implies the default bank.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See
midiOutCachePatches return values in the Win32 SDK.

Comments
A client sends the MODM_CACHEPATCHES message by calling the user-mode driver's
modMessage entry point, passing the specified parameters.

Typically, the user-mode driver requests the kernel-mode driver to cache the patch bank by
calling DeviceIoControl with an IOCTL_MIDI_CACHE_PATCHES control code.

MODM_CLOSE
The MODM_CLOSE message requests a MIDI output driver to close a specified device instance
that was previously opened with a MODM_OPEN message.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MODM_CLOSE
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

MODM_CLOSE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 91 Windows NT DDK

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See
midiOutClose return values in the Win32 SDK.

Comments
A client sends the MODM_CLOSE message by calling the user-mode driver's modMessage entry
point, passing the specified parameters.

If the client has passed data buffers to the user-mode driver by means of MODM_LONGDATA
messages, and if the user-mode driver hasn't finished sending the data to the kernel-mode driver,
the user-mode driver should return MIDIERR_STILLPLAYING in response to MODM_CLOSE.

After the driver closes the device instance it should send a MOM_CLOSE callback message to
the client.

For additional information, see Transferring MIDI Output Data.

MODM_DATA
The MODM_DATA message requests a MIDI output driver to send a single MIDI short message.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MODM_DATA
dwUser

Device instance identifier.
dwParam1

A MIDI short message. (See Comments section below.)
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See
midiOutShortMsg return values in the Win32 SDK.

Comments
A client sends the MODM_DATA message by calling the user-mode driver's modMessage entry
point, passing the specified parameters.

This message is used for the output of all MIDI events, except system-exclusive events.
System-exclusive events are output with the MODM_LONGDATA message.

Because the client can employ running status, and because MIDI short messages have varying
lengths, the user-mode driver must parse the dwParam1 parameter to determine the number of
bytes to send to the kernel-mode driver. Unused bytes in dwParam1 are not guaranteed to be
zero.

The driver can be designed to run synchronously, not returning until it sends the message, or
asynchronously, returning immediately and sending the MIDI data in the background, using a
separate thread.

Typically, the user-mode driver sends the message to the kernel-mode driver by calling
DeviceIoControl with an IOCTL_MIDI_PLAY control code.

MODM_GETDEVCAPS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 92 Windows NT DDK

The MODM_GETDEVCAPS message requests a MIDI output driver to return the capabilities of a
specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MODM_GETDEVCAPS
dwUser

Device instance identifier.
dwParam1

Pointer to a MIDIOUTCAPS structure, which is described in the Win32 SDK.
dwParam2

Size of the MIDIOUTCAPS structure in bytes.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See
midiOutGetDevCaps return values in the Win32 SDK.

Comments
A client sends the MODM_GETDEVCAPS message by calling the user-mode driver's
modMessage entry point, passing the specified parameters.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_MIDI_GET_CAPABILITIES control code.

The user-mode driver fills the MIDIOUTCAPS structure.

MODM_GETNUMDEVS
The MODM_GETNUMDEVS message requests a MIDI output driver to return the number of
device instances that it supports.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MODM_GETNUMDEVS
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver returns the number of MIDI output device instances it supports.

Comments
A client sends the MODM_GETNUMDEVS message by calling the user-mode driver's
modMessage entry point, passing the specified parameters.

The driver should return the number of logical MIDI output devices that can be supported.
Typically, for each physical device, a kernel-mode driver can support one or more logical devices

MODM_GETNUMDEVS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 93 Windows NT DDK

of various types. For example, for each Creative Labs Sound Blaster card, there are MIDI,
waveform, mixer, and auxiliary audio devices. Kernel-mode drivers store logical device names
and types in the registry under the path
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters\DeviceNumber\Devices
To correctly return the number of logical devices, the user-mode driver should examine the
\Devices subkey for each of the driver's \DeviceNumber keys, searching for logical devices of the
desired type. (Code in drvlib.lib provides this capability.)

MODM_GETVOLUME
The MODM_GETVOLUME message requests a MIDI output driver to return the current volume
level setting for the specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MODM_GETVOLUME
dwUser

Device instance identifier.
dwParam1

Pointer to a DWORD location to receive the volume setting.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See
midiOutGetVolume return values in the Win32 SDK.

Comments
A client sends the MODM_GETVOLUME message by calling the user-mode driver's
modMessage entry point, passing the specified parameters.

Support for this message by user-mode drivers is optional. If the driver supports
MODM_SETVOLUME, it must support MODM_GETVOLUME.

The volume value is returned in the DWORD pointed to by dwParam1 as follows:

Channel Portion of dwParam1 Used
Left channel Low word
Right channel High word
Single channel Low word

A value of zero is silence, and a value of 0xFFFF is full volume.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_MIDI_GET_VOLUME control code.

Only drivers for internal synthesizer devices can support volume level changes. Drivers for MIDI
output ports should return a MMSYSERR_NOTSUPPORTED error for this message.

MODM_LONGDATA
The MODM_LONGDATA message requests a MIDI output driver to send the contents of a
specified output buffer containing one or more MIDI events, including system-exclusive events.

Parameters
uDeviceId

MODM_LONGDATA
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 94 Windows NT DDK

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MODM_LONGDATA
dwUser

Device instance identifier.
dwParam1

Pointer to a MIDIHDR structure identifying the output buffer. (The MIDIHDR structure is
described in the Win32 SDK.)

dwParam2
Size of the MIDIHDR structure.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See
midiOutLongMsg return values in the Win32 SDK.

Comments
A client sends the MODM_LONGDATA message by calling the user-mode driver's modMessage
entry point, passing the specified parameters.

If the MHDR_PREPARED flag in the dwFlags member of MIDIHDR is not set, the driver should
return MIDIERR_UNPREPARED.

The driver should clear the MHDR_DONE flag, set the MHDR_INQUEUE flag, and place the
output buffer in its output queue. The driver returns control to the client by returning
MMSYSERR_NOERROR.

When the buffer contents have been sent, the driver should set the MHDR_DONE flag, clear the
MHDR_INQUEUE flag, and send the client a MOM_DONE callback message.

The driver can be designed to handle MODM_LONGDATA messages synchronously, not
returning until the message has been sent to the kernel-mode driver, or asynchronously, returning
immediately and using a separate thread to send the MIDI data in the background.

Typically, the user-mode driver sends the buffer to the kernel-mode driver by calling
DeviceIoControl with an IOCTL_MIDI_PLAY control code.

If clients use high-level audio interfaces, winmm.dll guarantees that the input buffer contains only
a single MIDI event, which can be either a short or long (system-exclusive) message. On the
other hand, if clients call midiOutLongMsg, there is no such guarantee. If your user-mode driver
is mmdrv.dll or is based on drvlib.lib functions, whatever is received in the input buffer is passed
directly to the kernel-mode driver by means of the DeviceIoControl call.

MODM_OPEN
The MODM_OPEN message is sent to a MIDI output driver to request it to open an instance of a
specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MODM_OPEN
dwUser

Pointer to location to receive device instance identifier.
dwParam1

Pointer to a MIDIOPENDESC structure, containing the client's device handle, notification
target, and instance ID.

dwParam2

MODM_OPEN
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 95 Windows NT DDK

Contains flags. The following flags are defined.
Flag Definition
CALLBACK_EVENT Indicates dwCallback member of

MIDIOPENDESC is an event handle.
CALLBACK_FUNCTION Indicates dwCallback member of

MIDIOPENDESC is the address of a callback
function.

CALLBACK_TASK Indicates dwCallback member of
MIDIOPENDESC is a task handle.

CALLBACK_WINDOW Indicates dwCallback member of
MIDIOPENDESC is a window handle.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See
midiOutOpen return values in the Win32 SDK.

Comments
A client sends the MODM_OPEN message by calling the user-mode driver's modMessage entry
point, passing the specified parameters.

Typically, user-mode drivers connect to kernel-mode drivers by calling CreateFile, specifying the
MS-DOS device name of one of the kernel-mode driver's devices.

The driver assigns a device instance identifier and returns it in the location pointed to by dwUser.
The driver can expect to receive this value as the dwUser input argument to all other
modMessage messages.

The driver determines the number of clients it allows to use a particular device. If a device is
opened by the maximum number of clients, it returns MMSYSERR_ALLOCATED for subsequent
open requests.

If the open operation succeeds, the driver should send the client a MOM_OPEN message by
calling the DriverCallback function.

For additional information, see Transferring MIDI Output Data.

MODM_PREPARE
The MODM_PREPARE message requests a MIDI output driver to prepare a system-exclusive
data buffer for output.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MODM_PREPARE
dwUser

Device instance identifier.
dwParam1

Pointer to a MIDIHDR structure identifying the buffer. (The MIDIHDR structure is described in
the Win32 SDK.)

dwParam2
Size of the MIDIHDR structure.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See

MODM_PREPARE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 96 Windows NT DDK

midiOutPrepareHeader return values in the Win32 SDK.

Comments
A client sends the MODM_PREPARE message by calling the user-mode driver's modMessage
entry point, passing the specified parameters.

Support for this message by user-mode drivers is optional. If the driver supports
MODM_PREPARE, it must also support MODM_UNPREPARE.

If the driver returns MMSYSERR_NOTSUPPORTED, winmm.dll prepares the buffer for use. For
most drivers, this behavior is sufficient. If the driver does perform buffer preparation, it must set
MHDR_PREPARED in the dwFlags member of MIDIHDR and return MMSYSERR_NOERROR.

For additional information, see Transferring MIDI Output Data.

MODM_RESET
The MODM_RESET message requests a MIDI output driver to stop sending output data and
return all output buffers to the client.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MODM_RESET
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See
midiOutReset return values in the Win32 SDK.

Comments
A client sends the MODM_RESET message by calling the user-mode driver's modMessage entry
point, passing the specified parameters.

If the driver's output queue contains any output buffers (see MODM_LONGDATA) whose contents
have not been sent to the kernel-mode driver, the driver should set the MHDR_DONE flag and
clear the MHDR_INQUEUE flag in each buffer's MIDIHDR structure, and then send the client a
MOM_DONE callback message for each buffer.

Typically, the user-mode driver stops device output by calling DeviceIoControl, sending the
kernel-mode driver an IOCTL_MIDI_SET_STATE control code.

If the device is an internal synthesizer, the driver should turn off all notes.

For additional information, see Transferring MIDI Output Data.

MODM_SETVOLUME
The MODM_SETVOLUME message requests a user-mode MIDI output driver to set the volume
level for the specified device.

Parameters
uDeviceId

MODM_SETVOLUME
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 97 Windows NT DDK

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MODM_SETVOLUME
dwUser

Device instance identifier.
dwParam1

A DWORD containing the volume setting.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See
midiOutSetVolume return values in the Win32 SDK.

Comments
A client sends the MODM_SETVOLUME message by calling the user-mode driver's
modMessage entry point, passing the specified parameters.

Support for this message by user-mode drivers is optional. If the driver supports
MODM_SETVOLUME, it must support MODM_GETVOLUME.

The volume value is specified by dwParam1 as follows:

Channel Portion of dwParam1 Used
Left channel Low word
Right channel High word
Single channel Low word

A value of zero is silence, and a value of 0xFFFF is full volume.

The kernel-mode driver might not support the full 16 bits of volume control and can truncate the
lower bits. However, the original value requested with AUXDM_SETVOLUME should be returned
with AUXDM_GETVOLUME.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_MIDI_SET_VOLUME control code.

Only drivers for internal synthesizer devices can support volume level changes. Drivers for MIDI
output ports should return a MMSYSERR_NOTSUPPORTED error for this message.

MODM_UNPREPARE
The MODM_UNPREPARE message requests a MIDI output driver to remove the buffer
preparation that was performed in response to a MODM_PREPARE message.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MODM_UNPREPARE
dwUser

Device instance identifier.
dwParam1

Specifies a pointer to MIDIHDR identifying the data buffer. (The MIDIHDR structure is
described in the Win32 SDK.)

dwParam2
Specifies the size of MIDIHDR in bytes.

MODM_UNPREPARE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 98 Windows NT DDK

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIDIERR error codes defined in mmsystem.h. See
midiOutUnprepareHeader return values in the Win32 SDK.

Comments
A client sends the MODM_UNPREPARE message by calling the user-mode driver's
modMessage entry point, passing the specified parameters.

Support for this message by user-mode drivers is optional. If the driver supports
MODM_PREPARE, it must also support MODM_UNPREPARE.

If the driver returns MMSYSERR_NOTSUPPORTED, winmm.dll removes the buffer preparation.
For most drivers, this behavior is sufficient. If the driver does support MODM_UNPREPARE, it
must clear MHDR_PREPARED in the dwFlags member of MIDIHDR and return
MMSYSERR_NOERROR.

For additional information, see Transferring MIDI Output Data.

MOM_CLOSE
The MOM_CLOSE callback message notifies a client that a user-mode driver has finished
processing a MODM_CLOSE message.

Parameters
dwMsg

MOM_CLOSE
dwParam1

NULL
dwParam2

NULL

Comments
A user-mode MIDI output driver sends a MOM_CLOSE message to its client, by means of a
callback, when the driver finishes processing a MODM_CLOSE message. The driver sends the
message to the client by calling DriverCallback, passing the specified parameters.

The driver sends the MOM_CLOSE message only if the client has previously specified a
notification target with a MODM_OPEN message.

Win32 SDK documentation states that clients receive a MM_MOM_CLOSE message if the
notification target is a window handle. MOM_CLOSE and MM_MOM_CLOSE are equivalent.

For more information, see Notifying Clients from Audio Drivers and Transferring MIDI Output
Data.

MOM_DONE
The MOM_DONE callback message notifies a client that a user-mode driver has finished
processing a MODM_LONGDATA message.

Parameters
dwMsg

MOM_DONE
dwParam1

Address of the MDIHDR structure that was received with the MODM_LONGDATA message.
(MIDIHDR is defined in the Win32 SDK.)

dwParam2
NULL

MOM_DONE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 99 Windows NT DDK

Comments
A user-mode MIDI output driver sends a MOM_DONE message to its client, by means of a
callback, when the driver finishes processing a MODM_LONGDATA message. The driver sends
the message to the client by calling DriverCallback, passing the specified parameters.

The driver sends the MOM_DONE message only if the client has previously specified a
notification target with a MODM_OPEN message.

Win32 SDK documentation states that clients receive a MM_MOM_DONE message if the
notification target is a window handle. MOM_DONE and MM_MOM_DONE are equivalent.

For more information, see Notifying Clients from Audio Drivers and Transferring MIDI Output
Data.

MOM_OPEN
The MOM_OPEN callback message notifies a client that a user-mode driver has finished
processing a MODM_OPEN message.

Parameters
dwMsg

MOM_OPEN
dwParam1

NULL
dwParam2

NULL

Comments
A user-mode MIDI output driver sends a MOM_OPEN message to its client, by means of a
callback, when the driver finishes processing a MODM_OPEN message. The driver sends the
message to the client by calling DriverCallback, passing the specified parameters.

The driver sends the MOM_OPEN message only if the client has specified a notification target
with the MODM_OPEN message.

Win32 SDK documentation states that clients receive an MM_MOM_OPEN message if the
notification target is a window handle. MOM_OPEN and MM_MOM_OPEN are equivalent.

For more information, see Notifying Clients from Audio Drivers and Transferring MIDI Output
Data.

MOM_POSITIONCB
The MOM_POSITIONCB callback message notifies a client that a user-mode driver has
encountered a MIDI event containing a MEVT_F_CALLBACK flag.

Parameters
dwMsg

MOM_POSITIONCB
dwParam1

NULL
dwParam2

NULL

Comments
User-mode drivers do not send MOM_POSITIONCB callback messages.

Clients using the MIDI output stream functions send streams of data contained in a series of
MIDIEVENT structures (see the Win32 SDK). Code in winmm.dll examines each MIDIEVENT

MOM_POSITIONCB
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 100 Windows NT DDK

structure and, if the MEVT_F_CALLBACK flag is set, sends a MOM_POSITIONCB message by
calling DriverCallback, passing the specified parameters.

The winmm.dll code sends MOM_POSITIONCB messages only if the client has specified a
notification target with the MODM_OPEN message.

Win32 SDK documentation states that clients receive a MM_MOM_POSITIONCB message if the
notification target is a window handle. MOM_POSITIONCB and MM_MOM_POSITIONCB are
equivalent.

For more information, see MIDI Output Streams, Notifying Clients from Audio Drivers and
Transferring MIDI Output Data.

MXDM_CLOSE
The MXDM_CLOSE message requests a user-mode mixer driver to close the specified device
instance that was opened with an MXDM_OPEN message.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MXDM_CLOSE
dwUser

Instance identifier of instance to close.
lParam1

Not used.
lParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIXERR error codes defined in mmsystem.h. See mixerClose
return values in the Win32 SDK.

Comments
A client sends the MXDM_CLOSE message by calling the user-mode driver's mxdMessage entry
point, passing the specified parameters.

Often, closing a driver instance simply involves removing a client-specific data structure.

MXDM_GETCONTROLDETAILS
The MXDM_GETCONTROLDETAILS message requests a user-mode mixer driver to return
detailed information about the specified control on the specified audio line.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MXDM_GETCONTROLDETAILS
dwUser

Instance identifier associated with the caller.
lParam1

Pointer to a MIXERCONTROLDETAILS structure, which is described in the Win32 SDK.
lParam2

Contains flag values. For a list of valid flags, see the description of mixerGetControlDetails in
the Win32 SDK.

MXDM_GETCONTROLDETAILS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 101 Windows NT DDK

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIXERR error codes defined in mmsystem.h. See
mixerGetControlDetails return values in the Win32 SDK.

Comments
A client sends the MXDM_GETCONTROLDETAILS message by calling the user-mode driver's
mxdMessage entry point, passing the specified parameters.

The driver receives an empty MIXERCONTROLDETAILS structure and fills it in.

MXDM_GETDEVCAPS
The MXDM_GETDEVCAPS message requests a user-mode mixer driver to return capabilities
information about the specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MXDM_GETDEVCAPS
dwUser

Instance identifier associated with the caller.
lParam1

Pointer to a MIXERCAPS structure, which is described in the Win32 SDK.
lParam2

Size of buffer pointed to by lparam1.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIXERR error codes defined in mmsystem.h. See
mixerGetDevCaps return values in the Win32 SDK.

Comments
A client sends the MXDM_GETDEVCAPS message by calling the user-mode driver's
mxdMessage entry point, passing the specified parameters.

The driver receives an empty MIXERCAPS structure and fills it in.

MXDM_GETLINECONTROLS
The MXDM_GETLINECONTROLS message requests a user-mode mixer driver to return
information about specified controls connected to a specified audio line, for the specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MXDM_GETLINECONTROLS
dwUser

Instance identifier associated with the caller.
lParam1

Pointer to a MIXERLINECONTROLS structure, which is described in the Win32 SDK.
lParam2

Contains flag values. For a list of valid flags, see the description of mixerGetLineControls in
the Win32 SDK.

MXDM_GETLINECONTROLS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 102 Windows NT DDK

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIXERR error codes defined in mmsystem.h. See
mixerGetLineControls return values in the Win32 SDK.

Comments
A client sends the MXDM_GETLINECONTROLS message by calling the user-mode driver's
mxdMessage entry point, passing the specified parameters.

The driver receives an empty MIXERLINECONTROLS structure and fills it in.

MXDM_GETLINEINFO
The MXDM_GETLINEINFO message requests a user-mode mixer driver to return information
about a specified audio line for the specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MXDM_GETLINEINFO
dwUser

Instance identifier associated with the caller.
lParam1

Pointer to a MIXERLINE structure, which is described in the Win32 SDK.
lParam2

Contains flag values. For a list of valid flags, see the description of mixerGetLineInfo in the
Win32 SDK.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIXERR error codes defined in mmsystem.h. See
mixerGetLineInfo return values in the Win32 SDK.

Comments
A client sends the MXDM_GETLINEINFO message by calling the user-mode driver's
mxdMessage entry point, passing the specified parameters.

The driver receives an empty MIXERLINE structure and fills it in.

MXDM_GETNUMDEVS
The MXDM_GETNUMDEVS message requests a user-mode mixer driver to return the number of
device instances it supports.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MXDM_GETNUMDEVS
dwUser

Not used.
lParam1

Not used.
lParam2

Not used.

MXDM_GETNUMDEVS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 103 Windows NT DDK

Return Value
Returns the number of devices the driver supports.

Comments
A client sends the MXDM_GETNUMDEVS message by calling the user-mode driver's
mxdMessage entry point, passing the specified parameters.

MXDM_INIT
A user-mode mixer driver's mxdMessage function receives a MXDM_INIT message while the
driver is being installed.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MXDM_INIT
dwUser

Not used.
lParam1

Not used.
lParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIXERR error codes defined in mmsystem.h.

Comments
A client sends the MXDM_INIT message by calling the user-mode driver's mxdMessage entry
point, passing the specified parameters.

Support for this message is optional. The message allows mixer drivers to perform additional
installation activities after DRV_INSTALL has been received.

MXDM_OPEN
The MXDM_OPEN message requests a user-mode mixer driver to open an instance of the
specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MXDM_OPEN
dwUser

Address of location into which driver places instance identifier.
lParam1

Pointer to a MIXEROPENDESC structure.
lParam2

Contains flag values. This is always CALLBACK_FUNCTION. (See Comments section below.)

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIXERR error codes defined in mmsystem.h. See mixerOpen

MXDM_OPEN
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 104 Windows NT DDK

return values in the Win32 SDK.

Comments
A client sends the MXDM_OPEN message by calling the user-mode driver's mxdMessage entry
point, passing the specified parameters.

Often, creating a driver instance simply entails creating an instance-specific data structure. The
instance identifier can be a handle to this structure.

Even though the description of mixerOpen in the Win32 SDK lists numerous flag values, these
flags are handled within winmm.dll.

According to the description of mixerOpen in the Win32 SDK, the only acceptable callback target
is a window handle. Code within winmm.dll pre-empts this callback target by placing the address
of a local callback function in the MIXEROPENDESC structure, and setting the
CALLBACK_FUNCTION flag in lParam2. The driver calls DriverCallback at the appropriate
times, specifying the callback function. The callback function, within winmm.dll, then sends a
callback message to the client-specified window handle.

MXDM_SETCONTROLDETAILS
The MXDM_SETCONTROLDETAILS message requests a user-mode mixer driver to set
information about specified controls connected to a specified audio line for a specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

MXDM_SETCONTROLDETAILS
dwUser

Instance identifier associated with caller.
lParam1

Pointer to a MIXERCONTROLDETAILS structure, which is described in the Win32 SDK.
lParam2

Contains flag values. For a list of valid flags, see the description of mixerGetLineControls in
the Win32 SDK.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or MIXERR error codes defined in mmsystem.h. See
mixerSetControlDetails return values in the Win32 SDK.

Comments
A client sends the MXDM_SETCONTROLDETAILS message by calling the user-mode driver's
mxdMessage entry point, passing the specified parameters.

The driver receives a MIXERCONTROLDETAILS structure containing information to be set.

WIDM_ADDBUFFER
The WIDM_ADDBUFFER requests a user-mode waveform input driver to add an empty input
buffer to its input buffer queue.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WIDM_ADDBUFFER

WIDM_ADDBUFFER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 105 Windows NT DDK

dwUser
Device instance identifier.

dwParam1
Pointer to a WAVEHDR structure identifying the buffer. (The WAVEHDR structure is described
in the Win32 SDK.)

dwParam2
Size of the WAVEHDR structure in bytes.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveInAddBuffer return values in the Win32 SDK.

Comments
A client sends the message by calling the user-mode driver's widMessage entry point, passing
the specified parameters.

If the WHDR_PREPARED flag is not set in the dwFlags member of the WAVEHDR structure, the
driver should return WAVERR_UNPREPARED. If the flag is set, the driver should:

• Clear the WHDR_DONE flag.
• Set the WHDR_INQUEUE flag.
• Place the empty buffer in its input queue.
• Return control to the client with a return value of MMSYSERR_NOERROR.

The user-mode driver starts recording when it receives a WIDM_START message.

For additional information, see Transferring Waveform Input Data.

WIDM_CLOSE
The WIDM_CLOSE message requests a waveform input driver to close a specified device
instance that was previously opened with a WIDM_OPEN message.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WIDM_CLOSE
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveInClose return values in the Win32 SDK.

Comments
A client sends the WIDM_CLOSE message by calling the user-mode driver's widMessage entry
point, passing the specified parameters.

If the driver has not filled and returned all of the buffers received with WIDM_ADDBUFFER
messages, it should not close the instance and should instead return WAVERR_STILLPLAYING.

WIDM_CLOSE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 106 Windows NT DDK

After the driver closes the device instance it should send a WIM_CLOSE callback message to the
client.

For additional information, see Transferring Waveform Input Data.

WIDM_GETDEVCAPS
The WIDM_GETDEVCAPS message requests a waveform input driver to return the capabilities
of a specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WIDM_GETDEVCAPS
dwUser

Device instance identifier.
dwParam1

Pointer to a WAVEINCAPS structure. (The WAVEINCAPS structure is described in the Win32
SDK.)

dwParam2
Size of the WAVEINCAPS structure in bytes.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveInGetDevCaps return values in the Win32 SDK.

Comments
A client sends the WIDM_GETDEVCAPS message by calling the user-mode driver's
widMessage entry point, passing the specified parameters.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_WAVE_GET_CAPABILITIES control code.

The user-mode driver fills the WAVEINCAPS structure.

WIDM_GETNUMDEVS
The WIDM_GETNUMDEVS message requests a waveform input driver to return the number of
device instances that it supports.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WIDM_GETNUMDEVS
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver returns the number of waveform input device instances it supports.

WIDM_GETNUMDEVS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 107 Windows NT DDK

Comments
A client sends the WIDM_GETNUMDEVS message by calling the user-mode driver's
widMessage entry point, passing the specified parameters.

The driver should return the number of logical waveform input devices that can be supported.
Typically, for each physical device, a kernel-mode driver can support one or more logical devices
of various types. For example, for each Creative Labs Sound Blaster card, there are MIDI,
waveform, mixer, and auxiliary audio devices. Kernel-mode drivers store logical device names
and types in the registry under the path
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters\DeviceNumber\Devices
To correctly return the number of logical devices, the user-mode driver should examine the
\Devices subkey for each of the driver's \DeviceNumber keys, looking for logical devices of the
desired type. (Code in drvlib.lib provides this capability.)

WIDM_GETPOS
The WIDM_GETPOS message requests a waveform input driver to return the current input
position within a waveform. The input position is relative to the first recorded sample of the
waveform.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WIDM_GETPOS
dwUser

Device instance identifier.
dwParam1

Pointer to an MMTIME structure. (The MMTIME structure is defined in the Win32 SDK.)
dwParam2

Size of the MMTIME in bytes.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveInGetPos return values in the Win32 SDK.

Comments
A client sends the WIDM_GETPOS message by calling the user-mode driver's widMessage
entry point, passing the specified parameters.

The wType member of the MMTIME structure indicates the time format requested by the client. If
the driver cannot support the requested format, it should return the position in a format that it
does support, and change the wType member accordingly.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_WAVE_GET_POSITION control code.

WIDM_LOWPRIORITY
The WIDM_LOWPRIORITY message requests a waveform input driver to run at low priority.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WIDM_LOWPRIORITY

WIDM_LOWPRIORITY
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 108 Windows NT DDK

dwUser
Device instance identifier.

dwParam1
Not used.

dwParam2
Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h.

Comments
A client sends the WIDM_LOWPRIORITY message by calling the user-mode driver's
widMessage entry point, passing the specified parameters.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_WAVE_SET_LOW_PRIORITY control code. Kernel-mode drivers using soundlib.lib allow
only one client to be running at low priority.

Support for this message by user-mode drivers is optional.

WIDM_OPEN
The WIDM_OPEN message is sent to a waveform input driver to request it to open an instance of
a specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WIDM_OPEN
dwUser

Pointer to location to receive device instance identifier.
dwParam1

Pointer to a WAVEOPENDESC structure, containing the client's device handle, notification
target, and instance ID.

dwParam2
Contains flags. The following flags are defined:

Flag Definition
CALLBACK_EVENT Indicates the dwCallback member of

WAVEOPENDESC is an event handle.
CALLBACK_FUNCTION Indicates the dwCallback member of

WAVEOPENDESC is the address of a callback
function.

CALLBACK_TASK Indicates the dwCallback member of
WAVEOPENDESC is a task handle.

CALLBACK_WINDOW Indicates the dwCallback member of
WAVEOPENDESC is a window handle.

WAVE_FORMAT_DIRECT Data compression/decompression operations should
take place in hardware. See Comments section
below.

WAVE_FORMAT_QUERY The driver should indicate whether or not it supports
the specified format. See Comments section below.

Return Value

WIDM_OPEN
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 109 Windows NT DDK

The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveInOpen return values in the Win32 SDK.

Comments
A client sends the WIDM_OPEN message by calling the user-mode driver's widMessage entry
point, passing the specified parameters.

Typically, user-mode drivers connect to kernel-mode drivers by calling CreateFile, specifying the
MS-DOS device name of one of the kernel-mode driver's devices.

The driver assigns a device instance identifier and returns it in the location pointed to by dwUser.
The driver can expect to receive this value as the dwUser input argument to all other
widMessage messages.

The driver determines the number of clients it allows to use a particular device. If a device is
opened by the maximum number of clients, it returns MMSYSERR_ALLOCATED for subsequent
open requests.

The WAVE_FORMAT_DIRECT flag is meant for use with a wave mapper. If the flag is set in
dwParam2, the driver should not call the Audio Compression Manager to handle
compression/decompression operations; the caller wants the hardware to perform these
operations directly. If the hardware is not capable of performing compression/decompression
operations, the driver should return MMSYSERR_NOTSUPPORTED when
WAVE_FORMAT_DIRECT is set.

If the WAVE_FORMAT_QUERY flag is set in dwParam2, the driver should not open the device,
but should instead determine whether it supports the format specified by the WAVEOPENDESC
structure's lpFormat member. If the driver supports the requested format, it should return
MMSYSERR_NOERROR. Otherwise it should return WAVERR_BADFORMAT.

If the open operation succeeds, the driver should send the client a WIM_OPEN message by
calling the DriverCallback function.

For additional information, see Transferring Waveform Input Data.

WIDM_PREPARE
The WIDM_PREPARE message requests a waveform input driver to prepare a system-exclusive
data buffer for input.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WIDM_PREPARE
dwUser

Device instance identifier.
dwParam1

Pointer to a WAVEHDR structure identifying the buffer. (The WAVEHDR structure is described
in the Win32 SDK.)

dwParam2
Size of the WAVEHDR structure.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveInPrepareHeader return values in the Win32 SDK.

Comments

WIDM_PREPARE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 110 Windows NT DDK

A client sends the WIDM_PREPARE message by calling the user-mode driver's widMessage
entry point, passing the specified parameters.

Support for this message by user-mode drivers is optional. If the driver supports
WIDM_PREPARE, it must also support WIDM_UNPREPARE.

If the driver returns MMSYSERR_NOTSUPPORTED, winmm.dll prepares the buffer for use. For
most drivers, this behavior is sufficient. If the driver does perform buffer preparation, it must set
WHDR_PREPARED in the dwFlags member of WAVEHDR and return MMSYSERR_NOERROR.

For additional information, see Transferring Waveform Input Data.

WIDM_RESET
The WIDM_RESET message requests a waveform input driver to stop recording and return all
buffers in the input queue to the client.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WIDM_RESET
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveInReset return values in the Win32 SDK.

Comments
A client sends the WIDM_RESET message by calling the user-mode driver's widMessage entry
point, passing the specified parameters.

Typically, the user-mode driver stops recording by calling DeviceIoControl, sending the
kernel-mode driver an IOCTL_WAVE_SET_STATE control code.

For each buffer remaining in the driver's input queue (see WIDM_ADDBUFFER), the driver
should set WHDR_DONE and clear WHDR_INQUEUE in the dwFlags member of the buffer's
WAVEHDR structure, and also set the structure's dwBytesRecorded member. Finally, a
WIM_DATA callback message should be sent for each buffer.

For additional information, see Transferring Waveform Input Data.

WIDM_START
The WIDM_START message requests a waveform input driver to begin recording.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WIDM_START
dwUser

Device instance identifier.

WIDM_START
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 111 Windows NT DDK

dwParam1
Not used.

dwParam2
Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveInStart return values in the Win32 SDK.

Comments
A client sends the WIDM_START message by calling the user-mode driver's widMessage entry
point, passing the specified parameters.

If the message is received after input has been started, the driver should return
MMSYSERR_NOERROR.

User-mode waveform input drivers should handle input asynchronously, by creating a separate
thread to handle communication with the kernel-mode driver. Typically, the new thread starts
recording by calling DeviceIoControl to send the kernel-mode driver an
IOCTL_WAVE_SET_STATE control code, and by calling ReadFileEx to request the kernel-mode
driver to fill client-supplied buffers (see WIDM_ADDBUFFER). When the kernel-mode driver
returns a filled buffer, the user-mode driver should:

• Set the dwBytesRecorded member in the buffer's WAVEHDR structure.
• Set the buffer's WHDR_DONE flag.
• Clear the buffer's WHDR_INQUEUE flag.
• Send a WIM_DATA callback message to the client.

To avoid unnecessarily locking too much memory, do not send the kernel-mode driver too many
buffers at once, or buffers that are excessively large.

Recording should continue until the client sends WIDM_STOP or WIDM_RESET.

For additional information, see Transferring Waveform Input Data.

WIDM_STOP
The WIDM_STOP message requests a waveform input driver to stop recording.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WIDM_STOP
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveInStop return values in the Win32 SDK.

Comments

WIDM_STOP
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 112 Windows NT DDK

A client sends the WIDM_STOP message by calling the user-mode driver's widMessage entry
point, passing the specified parameters.

If a buffer in the input queue (see WIDM_ADDBUFFER) has been partially filled, the driver should
treat it as a full buffer and return it to the client (see WIDM_START). Empty buffers should
remain in the queue.

If this message is received and recording is already stopped, the driver should return
MMSYSERR_NOERROR.

Typically, the user-mode driver stops recording by calling DeviceIoControl, sending the
kernel-mode driver an IOCTL_WAVE_SET_STATE control code.

For additional information, see Transferring Waveform Input Data.

WIDM_UNPREPARE
The WIDM_UNPREPARE message requests a waveform input driver to remove the buffer
preparation that was performed in response to a WIDM_PREPARE message.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WIDM_UNPREPARE
dwUser

Device instance identifier.
dwParam1

Pointer to a WAVEHDR structure identifying the data buffer. (The WAVEHDR structure is
described in the Win32 SDK.)

dwParam2
Size, in bytes, of the WAVEHDR structure.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveInUnprepareHeader return values in the Win32 SDK.

Comments
A client sends the WIDM_UNPREPARE message by calling the user-mode driver's widMessage
entry point, passing the specified parameters.

Support for this message by user-mode drivers is optional. If the driver supports
WIDM_PREPARE, it must also support WIDM_UNPREPARE.

If the driver returns MMSYSERR_NOTSUPPORTED, winmm.dll removes the buffer preparation.
For most drivers, this behavior is sufficient. If the driver does support WIDM_UNPREPARE, it
must clear WHDR_PREPARED in the dwFlags member of WAVEHDR and return
MMSYSERR_NOERROR.

For additional information, see Transferring Waveform Input Data.

WIM_CLOSE
The WIM_CLOSE callback message notifies a client that a user-mode driver has finished
processing a WIDM_CLOSE message.

Parameters
dwMsg

WIM_CLOSE

WIM_CLOSE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 113 Windows NT DDK

dwParam1
NULL

dwParam2
NULL

Comments
A user-mode waveform input driver sends a WIM_CLOSE message to its client, by means of a
callback, when the driver finishes processing a WIDM_CLOSE message. The driver sends the
message to the client by calling DriverCallback, passing the specified parameters.

The driver sends the WIM_CLOSE message only if the client has previously specified a
notification target with a WIDM_OPEN message.

Win32 SDK documentation states that clients receive an MM_WIM_CLOSE message if the
notification target is a window handle. WIM_CLOSE and MM_WIM_CLOSE are equivalent.

For additional information, see Notifying Clients from Audio Drivers and Transferring Waveform
Input Data.

WIM_DATA
The WIM_DATA callback message notifies a client that a user-mode driver has filled a buffer with
waveform data.

Parameters
dwMsg

WIM_DATA
dwParam1

Address of a WAVEHDR structure identifying a buffer containing the message. (WAVEHDR is
defined in the Win32 SDK.)

dwParam2
NULL

Comments
A user-mode waveform input driver sends a WIM_DATA message to its client, by means of a
callback, when the driver has filled a buffer with waveform data. The driver sends the message to
the client by calling DriverCallback, passing the specified parameters.

The WAVEHDR structure is one that was received along with a WIDM_ADDBUFFER message.

The driver sends the WIM_DATA message only if the client has previously specified a notification
target with a WIDM_OPEN message.

Win32 SDK documentation states that clients receive an MM_WIM_DATA message if the
notification target is a window handle. WIM_DATA and MM_WIM_DATA are equivalent.

For additional information, see Notifying Clients from Audio Drivers and Transferring Waveform
Input Data.

WIM_OPEN
The WIM_OPEN callback message notifies a client that a user-mode driver has finished
processing a WIDM_OPEN message.

Parameters
dwMsg

WIM_OPEN
dwParam1

NULL
dwParam2

WIM_OPEN
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 114 Windows NT DDK

NULL

Comments
A user-mode waveform output driver sends a WIM_OPEN message to its client, by means of a
callback, when the driver finishes processing a WIDM_OPEN message. The driver sends the
message to the client by calling DriverCallback, passing the specified parameters.

The driver sends the WIM_OPEN message only if the client has specified a notification target
with the WIDM_OPEN message.

Win32 SDK documentation states that clients receive an MM_WIM_OPEN message if the
notification target is a window handle. WIM_OPEN and MM_WIM_OPEN are equivalent.

For additional information, see Notifying Clients from Audio Drivers and Transferring Waveform
Input Data.

WODM_BREAKLOOP
The WODM_BREAKLOOP message requests a waveform output driver to break an output loop
that was created with a WODM_WRITE message.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_BREAKLOOP
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutBreakLoop return values in the Win32 SDK.

Comments
A client sends the WODM_BREAKLOOP message by calling the user-mode driver's
wodMessage entry point, passing the specified parameters.

The driver should stop output of the loop buffers at the end of the next loop iteration.

If the driver receives this message and a loop is not in progress, it should return
MMSYSERR_NOERROR.

WODM_CLOSE
The WODM_CLOSE message requests a waveform output driver to close a specified device
instance that was previously opened with a WODM_OPEN message.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_CLOSE
dwUser

WODM_CLOSE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 115 Windows NT DDK

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutClose return values in the Win32 SDK.

Comments
A client sends the WODM_CLOSE message by calling the user-mode driver's wodMessage
entry point, passing the specified parameters.

If the client has passed data buffers to the user-mode driver by means of WODM_WRITE
messages, and if the user-mode driver hasn't finished sending the data to the kernel-mode driver,
the user-mode driver should return WAVERR_STILLPLAYING in response to WODM_CLOSE.

After the driver closes the device instance it should send a WOM_CLOSE callback message to
the client.

For additional information, see Transferring Waveform Output Data.

WODM_GETDEVCAPS
The WODM_GETDEVCAPS message requests a waveform output driver to return the
capabilities of a specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_GETDEVCAPS
dwUser

Device instance identifier.
dwParam1

Pointer to a WAVEOUTCAPS structure, which is described in the Win32 SDK.
dwParam2

Size of the WAVEOUTCAPS structure in bytes.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutGetDevCaps return values in the Win32 SDK.

Comments
A client sends the WODM_GETDEVCAPS message by calling the user-mode driver's
wodMessage entry point, passing the specified parameters.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_WAVE_GET_CAPABILITIES control code.

The user-mode driver fills the WAVEOUTCAPS structure.

WODM_GETNUMDEVS
The WODM_GETNUMDEVS message requests a waveform output driver to return the number of

WODM_GETNUMDEVS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 116 Windows NT DDK

device instances that it supports.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_GETNUMDEVS
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver returns the number of waveform output device instances it supports.

Comments
A client sends the WODM_GETNUMDEVS message by calling the user-mode driver's
wodMessage entry point, passing the specified parameters.

The driver should return the number of logical waveform output devices that can be supported.
Typically, for each physical device, a kernel-mode driver can support one or more logical devices
of various types. For example, for each Creative Labs Sound Blaster card, there are MIDI,
waveform, mixer, and auxiliary audio devices. Kernel-mode drivers store logical device names
and types in the registry under the path
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters\DeviceNumber\Devices
To correctly return the number of logical devices, the user-mode driver should examine the
\Devices subkey for each of the driver's \DeviceNumber keys, searching for logical devices of the
desired type. (Code in drvlib.lib provides this capability.)

WODM_GETPITCH
The WODM_GETPITCH message requests a waveform output driver to return the specified
device's current pitch multiplier value.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_GETPITCH
dwUser

Device instance identifier.
dwParam1

Pointer to a DWORD location used to return the current pitch multiplier value. This is specified
as a fixed-point value, where the high-order word of the DWORD contains the signed integer
part of the number, and the low-order word contains the fractional part. The fraction consists of
a WORD value, for which 0x8000 represents one half, and 0x4000 represents one quarter. For
example, the value 0x00010000 specifies a multiplier of 1.0 (no pitch change), and a value of
0x000F8000 specifies a multiplier of 15.5.

dwParam2
Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See

WODM_GETPITCH
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 117 Windows NT DDK

waveOutGetPitch return values in the Win32 SDK.

Comments
A client sends the WODM_GETPITCH message by calling the user-mode driver's wodMessage
entry point, passing the specified parameters.

Support for the WODM_GETPITCH message by user-mode drivers is optional. If a driver
supports the WODM_SETPITCH message, it must also support WODM_GETPITCH.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_WAVE_GET_PITCH control code.

WODM_GETPLAYBACKRATE
The WODM_GETPLAYBACKRATE message requests a waveform output driver to return the
current playback rate multiplier value for the specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, etc.) for the target device.
uMsg

WODM_GETPLAYBACKRATE
dwUser

Device instance identifier.
dwParam1

Pointer to a DWORD location used to return the current playback rate multiplier value. This is
specified as a fixed-point value, where the high-order word of the DWORD contains the signed
integer part of the number, and the low-order word contains the fractional part. The fraction
consists of a WORD value, for which 0x8000 represents one half, and 0x4000 represents one
quarter. For example, the value 0x00010000 specifies a multiplier of 1.0 (no rate change), and
a value of 0x000F8000 specifies a multiplier of 15.5.

dwParam2
Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutGetPlaybackRate return values in the Win32 SDK.

Comments
A client sends the WODM_GETPLAYBACKRATE message by calling the user-mode driver's
wodMessage entry point, passing the specified parameters.

Support for the WODM_GETPLAYBACKRATE message by user-mode drivers is optional. If a
driver supports the WODM_SETPLAYBACKRATE message, it must also support
WODM_GETPLAYBACKRATE.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_WAVE_GET_PLAYBACK_RATE control code.

WODM_GETPOS
The WODM_GETPOS message requests a waveform output driver to return the current input
position within a waveform. The input position is relative to the beginning of the waveform.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.

WODM_GETPOS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 118 Windows NT DDK

uMsg
WODM_GETPOS

dwUser
Device instance identifier.

dwParam1
Pointer to an MMTIME structure, which is described in the Win32 SDK.

dwParam2
Size of the MMTIME structure in bytes.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutGetPos return values in the Win32 SDK.

Comments
A client sends the WODM_GETPOS message by calling the user-mode driver's wodMessage
entry point, passing the specified parameters.

The wType member of the MMTIME structure indicates the time format requested by the client. If
the driver cannot support the requested format, it should return the position in a format that it
does support, and change the wType member accordingly.

The position should be reset to zero when the driver receives a WODM_OPEN or
WODM_RESET message.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_WAVE_GET_POSITION control code.

WODM_GETVOLUME
The WODM_GETVOLUME message requests a waveform output driver to return the current
volume level setting for the specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_GETVOLUME
dwUser

Device instance identifier.
dwParam1

Pointer to a DWORD location to receive the volume setting.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutGetVolume return values in the Win32 SDK.

Comments
A client sends the WODM_GETVOLUME message by calling the user-mode driver's
wodMessage entry point, passing the specified parameters.

Support for this message by user-mode drivers is optional. If the driver supports
WODM_SETVOLUME, it must support WODM_GETVOLUME.

The volume value is returned in the DWORD pointed to by dwParam1 as follows.

WODM_GETVOLUME
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 119 Windows NT DDK

Channel Portion of dwParam1 Used
Left channel Low word
Right channel High word
Single channel Low word

A value of zero is silence, and a value of 0xFFFF is full volume.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_WAVE_GET_VOLUME control code.

WODM_OPEN
The WODM_OPEN message requests a waveform output driver to open an instance of a
specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_OPEN
dwUser

Pointer to location to receive device instance identifier.
dwParam1

Pointer to a WAVEOPENDESC structure, containing the client's device handle, notification
target, and instance ID.

dwParam2
Contains flags. The following flags are defined:

Flag Definition
CALLBACK_EVENT Indicates the dwCallback member of

WAVEOPENDESC is an event handle.
CALLBACK_FUNCTION Indicates the dwCallback member of

WAVEOPENDESC is the address of a callback
function.

CALLBACK_TASK Indicates the dwCallback member of
WAVEOPENDESC is a task handle.

CALLBACK_WINDOW Indicates the dwCallback member of
WAVEOPENDESC is a window handle.

WAVE_FORMAT_DIRECT Data compression/decompression operations
should take place in hardware. See Comments
section below.

WAVE_FORMAT_QUERY The driver should indicate whether or not it
supports the specified format. See comments.

WAVE_ALLOWSYNC Indicates the driver should allow opening of a
synchronous device. Ignored by mmdrv.dll and
drvlib.lib.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutOpen return values in the Win32 SDK.

Comments
A client sends the WODM_OPEN message by calling the user-mode driver's wodMessage entry
point, passing the specified parameters.

Typically, user-mode drivers connect to kernel-mode drivers by calling CreateFile, specifying the

WODM_OPEN
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 120 Windows NT DDK

MS-DOS device name of one of the kernel-mode driver's devices.

The driver assigns a device instance identifier and returns it in the location pointed to by dwUser.
The driver can expect to receive this value as the dwUser input argument to all other
wodMessage messages.

The driver determines the number of clients it allows to use a particular device. If a device is
opened by the maximum number of clients, it returns MMSYSERR_ALLOCATED for subsequent
open requests.

The WAVE_FORMAT_DIRECT flag is meant for use with a wave mapper. If the flag is set in
dwParam2, the driver should not call the Audio Compression Manager to handle
compression/decompression operations; the caller wants the hardware to perform these
operations directly. If the hardware is not capable of performing compression/decompression
operations, the driver should return MMSYSERR_NOTSUPPORTED when
WAVE_FORMAT_DIRECT is set.

If the WAVE_FORMAT_QUERY flag is set in dwParam2, the driver should not open the device,
but should instead determine whether it supports the format specified by the WAVEOPENDESC
structure's lpFormat member. If the driver supports the requested format, it should return
MMSYSERR_NOERROR. Otherwise it should return WAVERR_BADFORMAT.

If the open operation succeeds, the driver should send the client a WOM_OPEN message by
calling the DriverCallback function.

For additional information, see Transferring Waveform Output Data.

WODM_PAUSE
The WODM_PAUSE message requests a waveform output driver to pause playback of a
waveform.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_PAUSE
dwUser

Pointer to location to receive device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutPause return values in the Win32 SDK.

Comments
A client sends the WODM_PAUSE message by calling the user-mode driver's wodMessage
entry point, passing the specified parameters.

The driver should stop playing the waveform and should save the current position. Playback
should continue from this position when a WODM_RESTART message is received. Output
buffers received with the WODM_WRITE message while playback is paused should be placed in
the output queue.

If the driver receives this message while output is already paused, it should return
MMSYSERR_NOERROR.

WODM_PAUSE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 121 Windows NT DDK

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_WAVE_SET_STATE control code.

WODM_PREPARE
The WODM_PREPARE message requests a waveform output driver to prepare a
system-exclusive data buffer for output.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_PREPARE
dwUser

Device instance identifier.
dwParam1

Pointer to a WAVEHDR structure identifying the buffer. (The WAVEHDR structure is described
in the Win32 SDK.)

dwParam2
Size of the WAVEHDR structure.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutPrepareHeader return values in the Win32 SDK.

Comments
A client sends the WODM_PREPARE message by calling the user-mode driver's wodMessage
entry point, passing the specified parameters.

Support for this message by user-mode drivers is optional. If the driver supports
WODM_PREPARE, it must also support WODM_UNPREPARE.

If the driver returns MMSYSERR_NOTSUPPORTED, winmm.dll prepares the buffer for use. For
most drivers, this behavior is sufficient. If the driver does perform buffer preparation, it must set
WHDR_PREPARED in the dwFlags member of WAVEHDR and return MMSYSERR_NOERROR.

For additional information, see Transferring Waveform Output Data.

WODM_RESET
The WODM_RESET message requests a waveform output driver to stop sending output data and
return all output buffers to the client.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_RESET
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value

WODM_RESET
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 122 Windows NT DDK

The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutReset return values in the Win32 SDK.

Comments
A client sends the WODM_RESET message by calling the user-mode driver's wodMessage
entry point, passing the specified parameters.

If the driver's output queue contains any output buffers (see WODM_WRITE) whose contents
have not been sent to the kernel-mode driver, the driver should set the WHDR_DONE flag and
clear the WDR_INQUEUE flag in each buffer's WAVEHDR structure The driver should then send
the client a WOM_DONE callback message for each buffer.

The driver should reset its position count to zero. If playback is paused, the driver should also
take itself out of the paused state.

Typically, the user-mode driver stops device output by calling DeviceIoControl, sending the
kernel-mode driver an IOCTL_WAVE_SET_STATE control code.

For additional information, see Transferring Waveform Output Data.

WODM_RESTART
The WODM_RESTART message requests a waveform output driver to continue playback of a
waveform after playback has been paused with the WODM_PAUSE message.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_RESET
dwUser

Device instance identifier.
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutRestart return values in the Win32 SDK.

Comments
A client sends the WODM_RESET message by calling the user-mode driver's wodMessage
entry point, passing the specified parameters.

Data output should resume from the position that was saved when the WODM_PAUSE message
was received.

If the driver receives a WODM_RESTART message and output is not in a paused state, it should
to nothing except return MMSYSERR_NOERROR.

Typically, the user-mode driver resumes device output by calling DeviceIoControl, sending the
kernel-mode driver an IOCTL_WAVE_SET_STATE control code.

WODM_SETPITCH
The WODM_SETPITCH message requests a waveform output driver to set the specified device's
pitch multiplier value.

WODM_SETPITCH
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 123 Windows NT DDK

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_SETPITCH
dwUser

Device instance identifier.
dwParam1

A DWORD containing the pitch multiplier value. This is specified as a fixed-point value, where
the high-order word of the DWORD contains the signed integer part of the number, and the
low-order word contains the fractional part. The fraction consists of a WORD value, for which
0x8000 represents one half, and 0x4000 represents one quarter. For example, the value
0x00010000 specifies a multiplier of 1.0 (no pitch change), and a value of 0x000F8000
specifies a multiplier of 15.5.

dwParam2
Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutSetPitch return values in the Win32 SDK.

Comments
A client sends the WODM_SETPITCH message by calling the user-mode driver's wodMessage
entry point, passing the specified parameters.

Support for the WODM_SETPITCH message by user-mode drivers is optional. If a driver
supports the WODM_SETPITCH message, it must also support WODM_GETPITCH. Additionally,
in response to a WODM_GETDEVCAPS message, it must set WAVECAPS_PITCH in the
dwSupport member of the WAVEOUTCAPS structure.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_WAVE_SET_PITCH control code.

Note: The kernel-mode driver library, soundlib.lib, does not support pitch changes.

WODM_SETPLAYBACKRATE
The WODM_SETPLAYBACKRATE message requests a waveform output driver to set the
playback rate multiplier value for the specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_SETPLAYBACKRATE
dwUser

Device instance identifier.
dwParam1

A DWORD containing the playback rate multiplier value. This is specified as a fixed-point
value, where the high-order word of the DWORD contains the signed integer part of the
number, and the low-order word contains the fractional part. The fraction consists of a WORD
value, for which 0x8000 represents one half, and 0x4000 represents one quarter. For example,
the value 0x00010000 specifies a multiplier of 1.0 (no rate change), and a value of
0x000F8000 specifies a multiplier of 15.5.

dwParam2

WODM_SETPLAYBACKRATE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 124 Windows NT DDK

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutSetPlaybackRate return values in the Win32 SDK.

Comments
A client sends the WODM_SETPLAYBACKRATE message by calling the user-mode driver's
wodMessage entry point, passing the specified parameters.

Support for the WODM_SETPLAYBACKRATE message by user-mode drivers is optional. If a
driver supports the WODM_SETPLAYBACKRATE message, it must also support
WODM_GETPLAYBACKRATE. Additionally, in response to a WODM_GETDEVCAPS message,
it must set WAVECAPS_PLAYBACKRATE in the dwSupport member of the WAVEOUTCAPS
structure.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_WAVE_SET_PLAYBACK_RATE control code. Kernel-mode drivers can implement
playback rate changes by skipping or repeating samples. For example, if the playback rate is 2.0,
the driver would play every second sample at the original playback rate.

Note: The kernel-mode driver library, soundlib.lib, does not support playback rate changes.

WODM_SETVOLUME
The WODM_SETVOLUME message requests a waveform output driver to set the volume level
for the specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_SETVOLUME
dwUser

Device instance identifier.
dwParam1

Pointer to a DWORD location to receive the volume setting.
dwParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutSetVolume return values in the Win32 SDK.

Comments
A client sends the WODM_SETVOLUME message by calling the user-mode driver's
wodMessage entry point, passing the specified parameters.

Support for this message by user-mode drivers is optional. If the driver supports
WODM_SETVOLUME, it must support WODM_GETVOLUME.

The volume value is returned in the DWORD pointed to by dwParam1 as follows.

Channel Portion of dwParam1 Used
Left channel Low word
Right channel High word

WODM_SETVOLUME
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 125 Windows NT DDK

Single channel Low word

A value of zero is silence, and a value of 0xFFFF is full volume.

Typically, the user-mode driver calls DeviceIoControl to send the kernel-mode driver an
IOCTL_WAVE_SET_VOLUME control code.

WODM_UNPREPARE
The WODM_UNPREPARE message requests a waveform output driver to remove the buffer
preparation that was performed in response to a WODM_PREPARE message.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_UNPREPARE
dwUser

Device instance identifier.
dwParam1

Pointer to a WAVEHDR structure identifying the data buffer. (The WAVEHDR structure is
described in the Win32 SDK.)

dwParam2
Size of the WAVEHDR structure in bytes.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutUnprepareHeader return values in the Win32 SDK.

Comments
A client sends the WODM_UNPREPARE message by calling the user-mode driver's
wodMessage entry point, passing the specified parameters.

Support for this message by user-mode drivers is optional. If the driver supports
WODM_PREPARE, it must also support WODM_UNPREPARE.

If the driver returns MMSYSERR_NOTSUPPORTED, winmm.dll removes the buffer preparation.
For most drivers, this behavior is sufficient. If the driver does support WODM_UNPREPARE, it
must clear WHDR_PREPARED in the dwFlags member of WAVEHDR and return
MMSYSERR_NOERROR.

For additional information, see Transferring Waveform Output Data.

WODM_WRITE
The WODM_WRITE message requests a waveform output driver to write a waveform data block
to the specified device.

Parameters
uDeviceId

Device identifier (0, 1, 2, and so on) for the target device.
uMsg

WODM_WRITE
dwUser

Device instance identifier.
dwParam1

Pointer to a WAVEHDR structure identifying the data buffer. (The WAVEHDR structure is

WODM_WRITE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 126 Windows NT DDK

described in the Win32 SDK.)
dwParam2

Size of the WAVEHDR structure in bytes.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR or WAVERR error codes defined in mmsystem.h. See
waveOutWrite return values in the Win32 SDK.

Comments
A client sends the WODM_WRITE message by calling the user-mode driver's wodMessage entry
point, passing the specified parameters.

If the WHDR_PREPARED flag in the dwFlags member of WAVEHDR is not set, the driver
should return WAVERR_UNPREPARED.

Unless the device has been paused with a WODM_PAUSE message, the driver should begin
playback the first time it receives a WODM_WRITE message.

User-mode waveform output drivers should handle output asynchronously, by creating a separate
thread to handle communication with the kernel-mode driver. Typically, the original thread queues
the output buffer, sets its WHDR_INQUEUE flag and clears its WHDR_DONE flag in the
WAVEHDR structure, and returns control to the client.

Meanwhile, the new thread starts the output operation by calling DeviceIoControl to send the
kernel-mode driver an IOCTL_WAVE_SET_STATE control code, and by calling WriteFileEx to
send the kernel-mode driver the client-supplied data. When the kernel-mode driver finishes using
a buffer, this thread should set the buffer's WHDR_DONE flag. clear the buffer's
WHDR_INQUEUE flag, and send a WOM_DONE callback message to the client.

To avoid unnecessarily locking too much memory, do not send the kernel-mode driver too many
buffers at once, or buffers that are excessively large.

The driver should continue sending buffers to the kernel-mode driver until the client sends
WODM_PAUSE or WIDM_RESET.

The user-mode driver is usually responsible for implementing waveform looping. The driver
should check each buffer's WAVEHDR structure for WHDR_BEGINLOOP and
WHDR_ENDLOOP flags, along with an iteration count in the structure's dwLoops member.

For additional information, see Transferring Waveform Output Data.

WOM_CLOSE
The WOM_CLOSE callback message notifies a client that a user-mode driver has finished
processing a WODM_CLOSE message.

Parameters
dwMsg

WOM_CLOSE
dwParam1

NULL
dwParam2

NULL

Comments
A user-mode waveform input driver sends a WOM_CLOSE message to its client, by means of a
callback, when the driver finishes processing a WODM_CLOSE message. The driver sends the
message to the client by calling DriverCallback, passing the specified parameters.

The driver sends the WOM_CLOSE message only if the client has previously specified a

WOM_CLOSE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 127 Windows NT DDK

notification target with a WODM_OPEN message.

Win32 SDK documentation states that clients receive an MM_WOM_CLOSE message if the
notification target is a window handle. WOM_CLOSE and MM_WOM_CLOSE are equivalent.

For additional information, see Notifying Clients from Audio Drivers and Transferring Waveform
Output Data.

WOM_DONE
The WOM_DONE callback message notifies a client that a user-mode driver has finished
processing a WODM_WRITE message.

Parameters
dwMsg

WOM_DONE
dwParam1

Address of the WAVEHDR structure that was received with the WODM_WRITE message.
(WAVEIHDR is defined in the Win32 SDK.)

dwParam2
NULL

Comments
A user-mode waveform output driver sends a WOM_DONE message to its client, by means of a
callback, when the driver finishes processing a WODM_WRITE message. The driver sends the
message to the client by calling DriverCallback, passing the specified parameters.

The driver sends the WOM_DONE message only if the client has previously specified a
notification target with a WODM_OPEN message.

Win32 SDK documentation states that clients receive an MM_WOM_DONE message if the
notification target is a window handle. WOM_DONE and MM_WOM_DONE are equivalent.

For additional information, see Notifying Clients from Audio Drivers and Transferring Waveform
Output Data.

WOM_OPEN
The WOM_OPEN callback message notifies a client that a user-mode driver has finished
processing a WODM_OPEN message.

Parameters
dwMsg

WOM_OPEN
dwParam1

NULL
dwParam2

NULL

Comments
A user-mode waveform output driver sends a WOM_OPEN message to its client, by means of a
callback, when the driver finishes processing a WODM_OPEN message. The driver sends the
message to the client by calling DriverCallback, passing the specified parameters.

The driver sends the WOM_OPEN message only if the client has specified a notification target
with the WODM_OPEN message.

Win32 SDK documentation states that clients receive an MM_WOM_OPEN message if the
notification target is a window handle. WOM_OPEN and MM_WOM_OPEN are equivalent.

WOM_OPEN
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 128 Windows NT DDK

For additional information, see Notifying Clients from Audio Drivers and Transferring Waveform
Output Data.

Structures, User-Mode Audio Drivers
This section describes the structures used by user-mode audio drivers. These structures are
defined in mmddk.h.

MIDIOPENDESC
typedef struct midiopendesc_tag {
 HMIDI hMidi;
 DWORD dwCallback;
 DWORD dwInstance;
 DWORD cIds;
 MIDIOPENSTRMID rgIds[1];
} MIDIOPENDESC;

The MIDIOPENDESC structure contains information needed by user-mode MIDI input and MIDI
output drivers for sending callback messages to clients. The structure is created by winmm.dll and
passed to the user-mode driver along with a MODM_OPEN or MIDM_OPEN message.

Members
hMidi

Specifies the client's handle to the device, as assigned by winmm.dll. User-mode drivers
specify this handle as the hDriver parameter to DriverCallback, when sending a callback
message.

dwCallback
Specifies either the address of a callback function, a window handle, an event handle, or a task
handle, depending on the flag specified in the dwParam2 parameter of the MODM_OPEN or
MIDM_OPEN message.

dwInstance
Contains the dwCallbackInstance argument that the client specified when calling the
midiInOpen or midiOutOpen function. This value is returned to the client as the dwInstance
parameter to DriverCallback.

cIds
Number of rgIds array elements.

rgIds
Array of stream identifiers, containing one element for each open stream.

MIXEROPENDESC
typedef struct tMIXEROPENDESC
{
 HMIXER hmx;
 LPVOID pReserved0;
 DWORD dwCallback;
 DWORD dwInstance;
} MIXEROPENDESC;

The MIXEROPENDESC structure contains information needed by user-mode mixer drivers. The
structure is created by winmm.dll and passed to the driver with an MXDM_OPEN message.

Members
hmx

Specifies the client's handle to the device, as assigned by winmm.dll. User-mode drivers

MIXEROPENDESC
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 129 Windows NT DDK

specify this handle as the hDriver parameter to DriverCallback, when sending a callback
message.

dwCallback
Specifies the address of a callback function. (See the description of the MXDM_OPEN
message.)

dwInstance
Contains the dwCallbackInstance argument that the client specified when calling the
mixerOpen function. This value is returned to the client as the dwInstance parameter to
DriverCallback.

WAVEOPENDESC
typedef struct waveopendesc_tag {
 HWAVE hWave;
 LPWAVEFORMAT lpFormat;
 DWORD dwCallback;
 DWORD dwInstance;
 UINT uMappedDeviceID;
} WAVEOPENDESC;

The WAVEOPENDESC structure contains information needed by user-mode waveform input and
output drivers. The structure is created by winmm.dll and passed to the driver with a
WODM_OPEN or WIDM_OPEN message.

Members
hWave

Specifies the client's handle to the device, as assigned by winmm.dll. User-mode drivers
specify this handle as the hDriver parameter to DriverCallback, when sending a callback
message.

lpFormat
Points to a WAVEFORMATEX structure, indicating the waveform data format requested by the
client. (The WAVEFORMATEX structure is described in the Win32 SDK.)

dwCallback
Specifies either the address of a callback function, a window handle, an event handle, or a task
handle, depending on the flag contained in the dwParam2 parameter of the WODM_OPEN or
WIDM_OPEN message.

dwInstance
Contains the dwCallbackInstance argument that the client specified when calling the
waveInOpen or waveOutOpen function. This value is returned to the client as the dwInstance
parameter to DriverCallback.

uMappedDeviceID
For wave mapper, contains device identifier of mapped device.

Functions and Macros, drvlib.lib
This section describes the functions and macros available to user-mode audio drivers using
drvlib.lib. Function prototypes and macros are defined in the file registry.h.

DrvAccess
DrvAccess(

 PREG_ACCESS RegAccess
);

The DrvAccess macro determines if access to the service control manager has been granted by
a previous call to DrvCreateServicesNode.

DrvAccess
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 130 Windows NT DDK

Parameters
RegAccess

Pointer to a globally-defined structure of type REG_ACCESS.

Return Value
The macro equals 1 if access was granted. Otherwise the macro equals 0.

Comments
The structure pointed to by RegAccess must be a single, globally-defined REG_ACCESS
structure that the driver uses with all calls to drvlib.lib functions requiring a RegAccess parameter.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvCloseServiceManager
VOID

 DrvCloseServiceManager(
 PREG_ACCESS RegAccess
);

The DrvCloseServiceManager function closes the connection to the service control manager
that was created by calling DrvCreateServicesNode.

Parameters
RegAccess

Pointer to a globally-defined structure of type REG_ACCESS.

Return Value
None.

Comments
The structure pointed to by RegAccess must be a single, globally-defined REG_ACCESS
structure that the driver uses with all calls to drvlib.lib functions requiring a RegAccess parameter.

If DrvSaveParametersKey has been called to save registry contents in a temporary file, the file is
deleted.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvConfigureDriver
BOOL

 DrvConfigureDriver(
 PREG_ACCESS RegAccess,
 LPTSTR DriverName,
 SOUND_KERNEL_MODE_DRIVER_TYPE DriverType,
 BOOL (*SetParms)(PVOID),
 PVOID Context
);

The DrvConfigureDriver function opens a connection to the service control manager, creates a
kernel-mode driver service for the specified driver, and loads the kernel-mode driver.

Parameters
RegAccess

Pointer to a globally-defined structure of type REG_ACCESS.
DriverName

Pointer to the driver name. Must match DriverName in registry path.
DriverType

DrvConfigureDriver
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 131 Windows NT DDK

Driver type, used for indicating the kernel-mode driver's load group. The type is
SOUND_KERNEL_MODE_DRIVER_TYPE. The value can be one of the following.

Value Definition
SoundDriverTypeNormal Adds kernel-mode driver to "base" load group.
SoundDriverTypeSynth Adds kernel-mode driver to "Synthesizer Drivers"

load group.

The "Synthesizer Drivers" group is unknown to Windows NT and therefore is guaranteed to be
loaded last.

SetParms
Pointer to a driver-supplied function that is called before the kernel-mode driver is reloaded.
Can be NULL.

Context
Pointer to a driver-defined structure that is passed as input to the function pointed to by
SetParms. Can be NULL.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
The structure pointed to by RegAccess must be a single, globally-defined REG_ACCESS
structure that the driver uses with all calls to drvlib.lib functions requiring a RegAccess parameter.

The function performs the following operations, in order:

1. Calls DrvCreateServicesNode, specifying TRUE for the Create parameter.
2. Calls DrvUnloadKernelDriver to unload the kernel-mode driver.
3. Calls the driver-supplied function specified by the SetParms parameter. Generally, drivers use

this function to modify configuration parameters in the registry.
4. Calls DrvLoadKernelDriver to reload and restart the kernel-mode driver.

Typically, a user-mode driver calls DrvConfigureDriver from its DriverProc function when
processing a DRV_CONFIGURE or DRV_INSTALL command, after obtaining user-specified
configuration parameters from a dialog box.

After DrvConfigureDriver returns, call DrvCloseServiceManager.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvCreateDeviceKey
HKEY

 DrvCreateDeviceKey(
 LPCTSTR DriverName
);

The DrvCreateDeviceKey function creates a device subkey under the driver's \Parameters key.
The registry path to the created key is
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters\DeviceNumber.

Parameters
DriverName

Pointer to the driver name. Must match DriverName in registry path.

Return Value
Returns a handle to the device subkey, if the operation succeeds. Otherwise returns NULL.

Comments

DrvCreateDeviceKey
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 132 Windows NT DDK

The function creates the \Parameters key if it does not exist.

Device subkey names are assigned as \Device0, \Device1, \Device2, and so on.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvCreateServicesNode
BOOL

 DrvCreateServicesNode(
 PTCHAR DriverName,
 SOUND_KERNEL_MODE_DRIVER_TYPE DriverType,
 PREG_ACCESS RegAccess,
 BOOL Create
);

The DrvCreateServicesNode function creates a connection to the service control manager and,
optionally, creates a service object for the kernel-mode driver. The caller must have
Administrator's privilege.

Parameters
DriverName

Pointer to the driver name. Must match DriverName in registry path.
DriverType

Driver type, used for indicating the kernel-mode driver's load group. The type is
SOUND_KERNEL_MODE_DRIVER_TYPE. The value can be one of the following.

Value Definition
SoundDriverTypeNormal Adds kernel-mode driver to "base" load group.
SoundDriverTypeSynth Adds kernel-mode driver to "Synthesizer Drivers"

load group.
The "Synthesizer Drivers" group is unknown to Windows NT and therefore is guaranteed to be
loaded last.

RegAccess
Pointer to a globally-defined structure of type REG_ACCESS.

Create
If TRUE, the function creates a service object for the kernel-mode driver, if it does not already
exist. If FALSE, the function does not create the service object.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
The structure pointed to by RegAccess must be a single, globally-defined REG_ACCESS
structure that the driver uses with all calls to drvlib.lib functions requiring a RegAccess parameter.

Under Windows NT, kernel-mode drivers are considered to be services under the control of the
service control manager. The DrvCreateServicesNode function calls OpenSCManager to create
a connection to the local service control manager. OpenSCManager is called with a desired
access type of SC_MANAGER_ALL_ACCESS, which requires Administrators privilege. (For
information about OpenSCManager, see the Win32 SDK.) The service manager handle returned
by OpenSCManager is stored in the REG_ACCESS structure.

If the Create parameter is TRUE, the DrvCreateServicesNode function calls CreateService to
create the kernel-mode driver service and obtain a service handle. The DrvCreateServicesNode
function sets the service's start type to SERVICE_DEMAND_START, so it will not automatically
reload when the system is restarted. (For information about CreateService, see the Win32 SDK.)

A result of calling CreateService is the creation of a driver subkey under the \Services registry
key. The path to the subkey is

DrvCreateServicesNode
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 133 Windows NT DDK

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName.

If the Create parameter is FALSE, the function just creates a connection to the service control
manager and saves the service manager handle returned by OpenSCManager in the
REG_ACCESS structure. Anytime after calling DrvCreateServicesNode, you can call the
DrvAccess macro to determine if access to the service control manager was granted.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvDeleteServicesNode
BOOL

 DrvDeleteServicesNode(
 PREG_ACCESS RegAccess
);

The DrvDeleteServicesNode function marks for deletion a kernel-mode driver service that was
created by calling DrvCreateServicesNode.

Parameters
RegAccess

Pointer to a globally-defined structure of type REG_ACCESS.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. To obtain an error code
value, call GetLastError, which is described in the Win32 SDK.

Comments
The structure pointed to by RegAccess must be a single, globally-defined REG_ACCESS
structure that the driver uses with all calls to drvlib.lib functions requiring a RegAccess parameter.

The function calls DeleteService, described in the Win32 SDK, to mark the kernel-mode driver
service for deletion.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvIsDriverLoaded
BOOL

 DrvIsDriverLoaded(
 PREG_ACCESS RegAccess
);

The DrvIsDriverLoaded function determines if the kernel-mode driver is currently loaded and
running.

Parameters
RegAccess

Pointer to a globally-defined structure of type REG_ACCESS.

Return Value
Returns TRUE if the kernel-mode driver is loaded and running. Otherwise returns FALSE.

Comments
The structure pointed to by RegAccess must be a single, globally-defined REG_ACCESS
structure that the driver uses with all calls to drvlib.lib functions requiring a RegAccess parameter.

Drivers must call DrvCreateServicesNode before calling DrvIsDriverLoaded.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvLibInit
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 134 Windows NT DDK

BOOL
 DrvLibInit(
 HINSTANCE hModule,
 ULONG Reason,
 PCONTEXT pContext
);

The DrvLibInit function initializes drvlib.lib for use with the calling user-mode audio driver.
User-mode audio drivers call this function before they begin calling other functions in drvlib.lib.
They call the function again prior to being unloaded.

Parameters
hModule

Instance handle of the module that opened the user-mode driver. Obtained by calling
GetDriverModuleHandle, which is described in the Win32 SDK.

Reason
Set to one of the following values.

• DLL_PROCESS_ATTACH, if attaching to drvlib.lib.
• DLL_PROCESS_DETACH, if detaching from drvlib.lib.

pContext
Not used. Should be set to NULL.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
When the driver's DriverProc function receives a DRV_LOAD message, it should call DrvLibInit
with a Reason value of DLL_PROCESS_ATTACH.

When the driver's DriverProc function receives a DRV_FREE message, it should call DrvLibInit
with a Reason value of DLL_PROCESS_DETACH.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvLoadKernelDriver
BOOL

 DrvLoadKernelDriver(
 PREG_ACCESS RegAccess
);

The DrvLoadKernelDriver function loads and starts the kernel-mode driver.

Parameters
RegAccess

Pointer to a globally-defined structure of type REG_ACCESS.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. To obtain an error code
value, call GetLastError. which is described in the Win32 SDK.

Comments
The structure pointed to by RegAccess must be a single, globally-defined REG_ACCESS
structure that the driver uses with all calls to drvlib.lib functions requiring a RegAccess parameter.

The function sets the kernel-mode driver service's start type to SERVICE_SYSTEM_START, so it

DrvLoadKernelDriver
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 135 Windows NT DDK

will automatically reload and restart when the system is restarted. (For more information,
ChangeServiceConfig in the Win32 SDK.)

Drivers must call DrvCreateServicesNode before calling DrvLoadKernelDriver.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvNumberOfDevices
LONG

 DrvNumberOfDevices(
 PREG_ACCESS RegAccess,
 LPDWORD NumberOfDevices
);

The DrvNumberOfDevices function determines the number of device subkeys existing under the
driver's \Parameters key in the registry.

Parameters
RegAccess

Pointer to a globally-defined structure of type REG_ACCESS.
NumberOfDevices

Address of a location to receive the number of devices.

Return Value
Returns ERROR_SUCCESS if the operation succeeds. Otherwise returns one of the error codes
defined in winerror.h.

Comments
The structure pointed to by RegAccess must be a single, globally-defined REG_ACCESS
structure that the driver uses with all calls to drvlib.lib functions requiring a RegAccess parameter.

Drivers create device subkeys by calling DrvCreateDeviceKey.

Drivers must call DrvCreateServicesNode before calling DrvNumberOfDevices.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvQueryDeviceIdParameter
LONG

 DrvQueryDeviceIdParameter(
 PREG_ACCESS RegAccess,
 UINT DeviceNumber,
 PTCHAR ValueName,
 PDWORD pValue);

The DrvQueryDeviceIdParameter function reads the value associated with the specified value
name, under the specified driver's \Parameters registry key.

Parameters
RegAccess

Pointer to a globally-defined structure of type REG_ACCESS.
DeviceNumber

Device number. Used as an index to the device subkeys under the \Parameters key. See the
Comments section below.

ValueName
Pointer to a string representing the value name.

pValue
Pointer to a DWORD to receive the requested value.

DrvQueryDeviceIdParameter
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 136 Windows NT DDK

Return Value
Returns ERROR_SUCCESS if the operation succeeds. Otherwise returns one of the error codes
defined in winerror.h. See the Comments section below.

Comments
The structure pointed to by RegAccess must be a single, globally-defined REG_ACCESS
structure that the driver uses with all calls to drvlib.lib functions requiring a RegAccess parameter.

The value name and value are read from the registry path
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters\DeviceNumber,
where Number represents the number supplied by the DeviceNumber parameter.

The function can only return a value that is stored as a REG_DWORD type.

The function calls RegQueryValueEx and returns its return value. (See the Win32 SDK.)

To store values under a driver's \Parameters registry key, call DrvSetDeviceIdParameter.

Drivers must call DrvCreateServicesNode before calling DrvQueryDeviceIdParameter.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvRemoveDriver
LRESULT

 DrvRemoveDriver(
 PREG_ACCESS RegAccess
);

The DrvRemoveDriver function unloads the kernel-mode driver and marks the kernel-mode
driver service for deletion.

Parameters
RegAccess

Pointer to a globally-defined structure of type REG_ACCESS.

Return Value
Returns one of the following values.

Value Definition
DRVCNF_OK Kernel-mode driver service has been marked for deletion.

Driver was not loaded prior to call.
DRVCNF_RESTART Kernel-mode driver service has been marked for deletion.

Driver was loaded prior to call.
DRVCNF_CANCEL Attempt to mark kernel-mode driver service for deletion failed.

See the Comments section below.

Comments
The structure pointed to by RegAccess must be a single, globally-defined REG_ACCESS
structure that the driver uses with all calls to drvlib.lib functions requiring a RegAccess parameter.

The DrvRemoveDriver function first checks to see if the kernel-mode driver is loaded and, if it is,
calls DrvUnloadKernelDriver. Then it calls DrvDeleteServicesNode.

Typically, a user-mode driver calls DrvRemoveDriver from its DriverProc function, when
processing a DRV_REMOVE command. The return values provided by DrvRemoveDriver match
those specified for DRV_REMOVE.

The driver must call DrvCreateServicesNode before calling DrvRemoveDriver. After
DrvRemoveDriver returns, the driver should call DrvCloseServiceManager.

DrvRemoveDriver
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 137 Windows NT DDK

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvRestoreParametersKey
BOOL

 DrvRestoreParametersKey(
 PREG_ACCESS RegAccess
);

The DrvRestoreParametersKey function restores registry information that was saved when the
driver called DrvSaveParametersKey.

Parameters
RegAccess

Pointer to a globally-defined structure of type REG_ACCESS.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
The structure pointed to by RegAccess must be a single, globally-defined REG_ACCESS
structure that the driver uses with all calls to drvlib.lib functions requiring a RegAccess parameter.

The DrvRestoreParametersKey function deletes the temporary file in which the key information
was written by DrvSaveParametersKey, and removes the file name from the REG_ACCESS
structure.

Drivers must call DrvCreateServicesNode before calling DrvRestoreParametersKey.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvSaveParametersKey
BOOL

 DrvSaveParametersKey(
 PREG_ACCESS RegAccess
);

The DrvSaveParametersKey function saves the current contents of the driver's \Parameters
registry key, along with its subkeys, in a temporary file.

Parameters
RegAccess

Pointer to a globally-defined structure of type REG_ACCESS.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
The structure pointed to by RegAccess must be a single, globally-defined REG_ACCESS
structure that the driver uses with all calls to drvlib.lib functions requiring a RegAccess parameter.

If the DrvSaveParametersKey function succeeds, the REG_ACCESS structure contains the
name of the temporary file.

To restore the saved registry information, call DrvRestoreParametersKey.

Drivers must call DrvCreateServicesNode before calling DrvSaveParametersKey.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvSetDeviceIdParameter
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 138 Windows NT DDK

LONG
 DrvSetDeviceIdParameter(
 PREG_ACCESS RegAccess,
 UINT DeviceNumber,
 PTCHAR ValueName,
 DWORD Value
);

The DrvSetDeviceIdParameter function assigns the specified value to the specified value name
in the registry, under the specified device's \Parameters key.

Parameters
RegAccess

Pointer to a globally-defined structure of type REG_ACCESS.
DeviceNumber

Device number. Used as an index to the device subkeys under the \Parameters key. See the
Comments section below.

ValueName
Pointer to a string representing the value name.

Value
Value to be written.

Return Value
Returns ERROR_SUCCESS if the operation succeeds. Otherwise returns one of the error codes
defined in winerror.h. See the Comments section below.

Comments
The structure pointed to by RegAccess must be a single, globally-defined REG_ACCESS
structure that the driver uses with all calls to drvlib.lib functions requiring a RegAccess parameter.

Before a driver can call the DrvSetDeviceIdParameter function, it must call
DrvCreateDeviceKey.

The value name and value are written to the registry path
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters\DeviceNumber,
where Number represents the number supplied by the DeviceNumber parameter.

The specified value is stored as a REG_DWORD type.

The function calls RegSetValueEx, which is described in the Win32 SDK, and returns its return
value.

To retrieve a registry value written with DrvSetDeviceIdParameter, call
DrvQueryDeviceIdParameter.

Drivers must call DrvCreateServicesNode before calling DrvSetDeviceIdParameter.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvSetMapperName
VOID

 DrvSetMapperName(
 LPTSTR SetupName
);

The DrvSetMapperName function specifies the name of the map that the MIDI Mapper should
use.

Parameters

DrvSetMapperName
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 139 Windows NT DDK

SetupName
Pointer to a string representing the name of the mapping to use.

Return Value
None.

Comments
The functions assigns the specified string to be the value of "Mapping Name", under the registry
key HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Midimap.

Drivers must call DrvCreateServicesNode before calling DrvSetMapperName.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

DrvUnloadKernelDriver
BOOL

 DrvUnloadKernelDriver(
 PREG_ACCESS RegAccess
);

The DrvUnloadKernelDriver function unloads the kernel mode driver.

Parameters
RegAccess

Pointer to a globally-defined structure of type REG_ACCESS.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. To obtain an error code
value, call GetLastError, which is described in the Win32 SDK.

Comments
The structure pointed to by RegAccess must be a single, globally-defined REG_ACCESS
structure that the driver uses with all calls to drvlib.lib functions requiring a RegAccess parameter.

The function sets the kernel-mode driver service's start type to SERVICE_DEMAND_START, so
it will not automatically reload when the system is restarted. (For more information,
ChangeServiceConfig in the Win32 SDK.)

Drivers must call DrvCreateServicesNode before calling DrvUnLoadKernelDriver.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

GetInterruptsAndDMA
BOOL

 GetInterruptsAndDMA(
 LPDWORD InterruptsInUse,
 LPDWORD DmaChannelsInUse,
 LPCTSTR IgnoreDriver
);

The GetInterruptsAndDMA function examines the registry to determine which interrupt numbers
and DMA channels are assigned to devices.

Parameters
InterruptsInUse

Pointer to a DWORD. Receives a bit array of interrupts in use. If interrupt i is in use, then bit i
is set.

GetInterruptsAndDMA
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 140 Windows NT DDK

DMAChannelsInUse
Pointer to a DWORD. Receives a bit array of DMA channels in use. If channel i is in use, then
bit i is set.

IgnoreDriver
Pointer to the name of a kernel-mode driver. The interrupt numbers and DMA channels of the
devices controlled by this driver are not included in the returned InterruptsInUse and
DMAChannelsInUse bit arrays. Can be NULL.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
Typically, a user-mode driver calling this function specifies the name of its kernel-mode driver for
the IgnoreDriver parameter.

For additional information, see Installing and Configuring your Driver, Using drvlib.lib.

Structures and Types, drvlib.lib
This section describes the structures and types available to user-mode audio drivers using
drvlib.lib. The structures and types are defined in the file registry.h.

REG_ACCESS
typedef struct {
 SC_HANDLE ServiceManagerHandle;
 LPTSTR DriverName;
 TCHAR TempKeySaveFileName[MAX_PATH];
} REG_ACCESS, *PREG_ACCESS;

The REG_ACCESS structure contains registry access information.

Members
ServiceManagerHandle

Contains a handle to the local service control manager.
DriverName

Pointer to a driver name. This is the DriverName argument to DrvCreateServicesNode.
TempKeySaveFileName

Name of a file created by DrvSaveParametersKey.

Comments
User-mode drivers using drvlib.lib functions to access the registry must declare a single global
variable of this type for use with all function calls.

Drivers do not reference the structure contents.

The structure is initialized by DrvCreateServicesNode.

SOUND_KERNEL_MODE_DRIVER_TYPE
typedef enum {
 SoundDriverTypeNormal = 1,
 SoundDriverTypeSynth /* Go in the synth group */
} SOUND_KERNEL_MODE_DRIVER_TYPE;

SOUND_KERNEL_MODE_DRIVER_TYPE is an enumeration type used to differentiate drivers
that belong to the "base" load group from those that do not.

SOUND_KERNEL_MODE_DRIVER_TYPE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 141 Windows NT DDK

Specifying SoundDriverTypeNormal assigns a driver to the "base" group.

Specifying SoundDriverTypeSynth assigns a driver to the "Synthesizer Drivers" group. This
group is unknown to Windows NT and therefore is guaranteed to be loaded last.

The type is used with input parameters to DrvCreateServicesNode and DrvConfigureDriver.
(See CreateService in the Win32 SDK for information about load groups.)

Functions, soundlib.lib
This section describes the functions available to kernel-mode audio drivers using soundlib.lib.
Function prototypes are defined in soundlib.h, devices.h, wave.h, midi.h, mixer.h, and synthdrv.h.

SoundAddIrpToCancellableQ
VOID

 SoundAddIrpToCancellableQ(
 PLIST_ENTRY QueueHead,
 PIRP Irp,
 BOOLEAN Head
);

The SoundAddIrpToCancellableQ function adds an IRP to a queue and makes the IRP
cancelable.

Parameters
QueueHead

Pointer to the head of a queue of IRPs.
Irp

Pointer to an IRP.
Head

TRUE or FALSE. If TRUE, add IRP to head of queue. If FALSE, add IRP to tail of queue.

Return Value
None.

Comments
Before an IRP can be added to the queue, the queue must be initialized by calling
InitializeListHead.

Generally, drivers using soundlib.lib do not need to manipulate IRP queues because DPCs in
soundlib.lib handle IRP completion. For drivers that do manipulate IRP queues, the
SoundAddIrpToCancellableQ, SoundRemoveFromCancellableQ,
SoundMoveCancellableQueue, SoundFreePendingIrps, and SoundFreeQ functions are
provided.

SoundAuxDispatch
NTSTATUS

 SoundAuxDispatch(
 IN OUT PLOCAL_DEVICE_INFO pLDI,
 IN PIRP pIrp,
 IN PIO_STACK_LOCATION IrpStack
);

The SoundAuxDispatch function is the IRP control code dispatcher for auxiliary audio devices.

Parameters
pLDI

SoundAuxDispatch
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 142 Windows NT DDK

Pointer to a LOCAL_DEVICE_INFO structure.
pIrp

Pointer to an IRP.
IrpStack

Pointer to an I/O stack location.

Return Value
Returns STATUS_SUCCESS if the operation succeeds. Otherwise returns an NTSTATUS error
code.

Comments
Kernel-mode auxiliary audio device drivers using soundlib.lib place the address of the
SoundAuxDispatch function in the DispatchRoutine member of a SOUND_DEVICE_INIT
structure. The function is called by soundlib.lib's main dispatcher, SoundDispatch.

The function processes the following IRP control codes:

IRP_MJ_CLEANUP
IRP_MJ_CLOSE
IRP_MJ_CREATE
IRP_MJ_DEVICE_CONTROL

For IRP_MJ_DEVICE_CONTROL, the SoundAuxDispatch function processes the following I/O
control codes:

IOCTL_AUX_GET_CAPABILITIES
IOCTL_AUX_GET_VOLUME
IOCTL_AUX_SET_VOLUME
IOCTL_SOUND_GET_CHANGED_VOLUME

Refer to the Kernel-Mode Drivers Reference for descriptions of PIRP and
PIO_STACK_LOCATION types, along with IRP control codes and I/O control codes.

SoundConnectInterrupt
NTSTATUS

 SoundConnectInterrupt(
 IN ULONG InterruptNumber,
 IN INTERFACE_TYPE BusType,
 IN ULONG BusNumber,
 IN PKSERVICE_ROUTINE Isr,
 IN PVOID ServiceContext,
 IN KINTERRUPT_MODE InterruptMode,
 IN BOOLEAN ShareVector,
 OUT PKINTERRUPT *Interrupt
);

The SoundConnectInterrupt function creates an interrupt object and installs an interrupt handler.

Parameters
InterruptNumber

Interrupt number.
BusType

Bus type. INTERFACE_TYPE is defined in ntddk.h.
BusNumber

Bus number, as returned from SoundGetBusNumber.
Isr

Pointer to an interrupt service routine (ISR). PKSERVICE_ROUTINE is defined in ntddk.h as

SoundConnectInterrupt
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 143 Windows NT DDK

follows:
typedef BOOLEAN
(*PKSERVICE_ROUTINE) (
 IN struct _KINTERRUPT *Interrupt,
 IN PVOID ServiceContext
);

ServiceContext
Pointer to driver-specified information that is passed to the ISR.

InterruptMode
Interrupt mode (Latched or LevelSensitive). KINTERRUPT_MODE is defined in ntddk.h.

ShareVector
TRUE if interrupt is shareable, FALSE otherwise.

Interrupt
Pointer to one or more system-defined interrupt objects in nonpaged memory.

Return Value
Returns one of the following values.

Value Definition
STATUS_SUCCESS Operation succeeded.
STATUS_DEVICE_CONFIGURATION_ERROR Improper input parameter.
STATUS_INSUFFICIENT_RESOURCES Insufficient system resources.

Comments
Interrupt objects are of type _KINTERRUPT. These are a system-defined type that your driver
doesn't reference directly. Save the interrupt object pointer received in Interrupt, because it must
be passed as input to KeSynchronizeExecution.

The ISR is responsible for clearing device interrupts. The HAL handles controller interrupts. After
interrupts are cleared, the ISR should call IoRequestDPC to queue a deferred procedure call to
the DPC function pointed to by the DeferredRoutine member of the SOUND_DEVICE_INIT
structure. The DPC function should finish processing the interrupt.

Prior to being unloaded, the driver must release the interrupt objects by calling
IoDisconnectInterrupt.

For discussions of interrupt objects and deferred procedure calls, see the Kernel-Mode Drivers
Design Guide.

SoundCreateDevice
NTSTATUS

 SoundCreateDevice(
 IN PCSOUND_DEVICE_INIT DeviceInit,
 IN UCHAR CreationFlags,
 IN PDRIVER_OBJECT pDriverObject,
 IN PVOID pGDI,
 IN PVOID DeviceSpecificData,
 IN PVOID pHw,
 IN int i,
 OUT PDEVICE_OBJECT *ppDevObj
);

The SoundCreateDevice function creates a device object and an associated
LOCAL_DEVICE_INFO structure.

Parameters

SoundCreateDevice
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 144 Windows NT DDK

DeviceInit
Pointer to an initialized SOUND_DEVICE_INIT structure.

CreationFlags
The following flag values are supported:

Flag Definition
SOUND_CREATION_NO_NAME_RANGE Don't append number to name

prototype when creating device name.
SOUND_CREATION_NO_VOLUME Volume setting not supported.

pDriverObject
Pointer to the driver object received as input to the DriverEntry function.

pGDI
Pointer to driver-specified information. Pointer is stored in the pGlobalInfo member of the
device's LOCAL_DEVICE_INFO structure.

DeviceSpecificData
Pointer to one of the following device-type structures.

Structure Usage
WAVE_INFO For waveform devices
MIDI_INFO For MIDI devices
MIXER_INFO For mixer devices
NULL For other devices

pHw
Pointer to driver-specified hardware context information. The pointer is stored in the
HwContext member of the device's LOCAL_DEVICE_INFO structure.

i
Driver-specified index value. Stored in DeviceIndex member of the device's
LOCAL_DEVICE_INFO structure.

ppDevObj
Address of a location to receive a pointer to a DEVICE_OBJECT structure, if the call succeeds.

Return Value
Returns STATUS_SUCCESS if device creation succeeds. Returns
STATUS_INSUFFICIENT_RESOURCES if device creation fails.

Comments
The SOUND_DEVICE_INIT structure must be nonpaged.

The SoundCreateDevice function creates a device object by calling IoCreateDevice. If the
object creation succeeds, the function returns the address of a DEVICE_OBJECT structure. The
function also allocates a LOCAL_DEVICE_INFO structure and assigns its address to the
DeviceExtension member of the DEVICE_OBJECT structure.

The function calls IoCreateSymbolicLink to map the NT generic name for the device object to
the corresponding Win32 logical name.

For more information about device objects, see the Kernel-Mode Drivers Design Guide.

SoundCreateDeviceName
NTSTATUS

 SoundCreateDeviceName(
 PCWSTR PrePrefix,
 PCWSTR Prefix,
 UCHAR Index,
 PUNICODE_STRING DeviceName
);

SoundCreateDeviceName
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 145 Windows NT DDK

The SoundCreateDeviceName function creates a device name from the specified component
parts.

Parameters
PrePrefix

Pointer to a string to prepend to the string pointed to by Prefix. Typically, this string is
"\Device\" or "\DosDevices\".

Prefix
Pointer to a string containing the main part of the name. Typically, this is the PrototypeName
member of a SOUND_DEVICE_INIT structure.

Index
Number to append to the device name. Specify 0xFF if an index number should not be
appended.

DeviceName
Pointer to a UNICODE_STRING structure, which receives the constructed name string.

Return Value
Returns one of the following values.

Value Definition
STATUS_SUCCESS Operation succeeded.
STATUS_INSUFFICIENT_RESOURCES Could not allocate string buffer.

SoundDelay
VOID

 SoundDelay(
 IN ULONG Milliseconds
);

The SoundDelay function delays execution of the calling thread for at least the specified number
of milliseconds.

Parameters
Milliseconds

Number of milliseconds to delay.

Return Value
None.

Comments
If the IRQL is greater than or equal to DISPATCH_LEVEL, the function returns without waiting.

SoundDispatch
NTSTATUS

 SoundDispatch(
 IN PDEVICE_OBJECT pDO,
 IN PIRP pIrp
);

The SoundDispatch function is the main dispatcher for IRP function codes within soundlib.lib

Parameters
pDO

Pointer to a device object.
pIrp

SoundDispatch
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 146 Windows NT DDK

Pointer to an IRP.

Return Value
Returns STATUS_SUCCESS if the operation succeeds. Otherwise returns an NTSTATUS error
code.

Comments
For more information about device objects and IRPs, see the Kernel-Mode Drivers Design Guide.

Within the DEVICE_OBJECT structure passed to a kernel-mode driver's DriverEntry function,
SoundDispatch must be specified as the dispatcher for the following IRP control codes:

• IRP_MJ_CLEANUP
• IRP_MJ_CLOSE
• IRP_MJ_CREATE
• IRP_MJ_DEVICE_CONTROL
• IRP_MJ_READ
• IRP_MJ_WRITE

SoundDispatch does not process the IRPs. Instead, it calls the secondary dispatcher specified
as the DispatchRoutine member of the appropriate SOUND_DEVICE_INIT structure. (A pointer
to the SOUND_DEVICE_INIT structure is contained in the device object.) Secondary dispatchers
provided by soundlib.lib are:

• SoundAuxDispatch
• SoundMidiDispatch
• SoundMixerDispatch
• SoundWaveDispatch

SoundEnter
VOID

 SoundEnter(
 PLOCAL_DEVICE_INFO pLDI,
 BOOLEAN Enter
);

The SoundEnter function calls a device's exclusion routine, passing it either a
SoundExcludeEnter or a SoundExcludeLeave message.

Parameters
pLDI

Pointer to a LOCAL_DEVICE_INFO structure.
Enter

TRUE or FALSE. If TRUE, the exclusion routine is called with a SoundExcludeEnter
message. If FALSE, the exclusion routine is called with a SoundExcludeLeave message.

Return Value
None.

Comments
The SoundEnter function calls the exclusion routine that is specified as the ExclusionRoutine
member of a SOUND_DEVICE_INIT structure. The SOUND_DEVICE-INIT structure's address is
contained in the pLDI structure. See "Using Exclusion Routines".

For definitions of the SoundExcludeEnter and SoundExcludeLeave messages, see
SOUND_EXCLUDE_CODE.

SoundEnter
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 147 Windows NT DDK

SoundEnumSubkeys
NTSTATUS

 SoundEnumSubkeys(
 IN PUNICODE_STRING RegistryPathName,
 IN PWSTR Subkey,
 IN PSOUND_REGISTRY_CALLBACK_ROUTINE Callback,
 IN PVOID Context
);

The SoundEnumSubkeys function enumerates the subkeys under the specified subkey, which is
in the specified registry path. For each subkey found under the specified subkey,
SoundEnumSubkeys calls the specified callback function.

Parameters
RegistryPathName

Pointer to a string representing the registry path to the driver subkey. Use the path name
received as the RegistryPathName argument to DriverEntry.

SubKey
Pointer to a string representing the subkey at end of the path specified by RegistryPathName.
SoundEnumSubkeys enumerates subkeys under this subkey.

Callback
Pointer to a function to call for each subkey found under Subkey. The function type is
SOUND_REGISTRY_CALLBACK_ROUTINE.

Context
Pointer to a driver-specified context parameter. This parameter is passed to the function
pointed to by Callback.

Return Value
If the function detects a failure, it returns an NTSTATUS error code. Otherwise it returns the value
returned by the callback function. If the callback function succeeds, it should return
STATUS_SUCCESS. Otherwise it should return an NTSTATUS error code.

Comments
Use the SoundEnumSubkeys function when performing device initialization operations, if your
driver supports multiple hardware devices. If you specify "Parameters" for the Subkey parameter,
the function calls the callback function for each "device" subkey under \Parameters. For an
example, see Examining DriverEntry in sndblst.sys. (The device entries under the \Parameters
subkey are created by user-mode drivers, typically by calling DrvCreateDeviceKey.)

SoundEnumSubkeys passes a registry path name to the callback function (see
SOUND_REGISTRY_CALLBACK_ROUTINE).This path name is the path name received as the
RegistryPathName argument, with \Parameters\DeviceNumber appended.

The callback function returns an NTSTATUS value. If, for any call to the callback function, the
return value is not STATUS_SUCCESS, then SoundEnumSubkeys immediately returns to its
caller, passing back the return value received from the callback function.

Drivers which do not support multiple hardware devices do not call SoundEnumSubkeys.
Instead, they should call SoundSaveRegistryPath as part of their initialization operation, in order
to create a registry path name that can be used as input to other soundlib.lib functions.

SoundFreeCommonBuffer
VOID

 SoundFreeCommonBuffer(
 IN OUT PSOUND_DMA_BUFFER SoundAutoData
);

SoundFreeCommonBuffer
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 148 Windows NT DDK

The SoundFreeCommonBuffer function frees a DMA buffer that was previously allocated by
SoundGetCommonBuffer.

Parameters
SoundAutoData

Pointer to a SOUND_DMA_BUFFER structure.

Return Value
None.

Comments
The SoundFreeCommonBuffer function also frees the MDL associated with the buffer. (For
information about MDLs, see the Kernel-Mode Drivers Design Guide.)

Drivers calling SoundFreeCommonBuffer must include wave.h.

SoundFreeDevice
VOID

 SoundFreeDevice(
 IN PDEVICE_OBJECT DeviceObject
);

The SoundFreeDevice function deletes a device object and frees its resources.

Parameters
DeviceObject

Pointer to a device object.

Return Value
None.

Comments
SoundFreeDevice frees resources that were reserved with SoundReportResourceUsage. It
also frees resources associated with the driver object. The specified device object is deleted.

SoundFreePendingIrps
VOID

 SoundFreePendingIrps(
 PLIST_ENTRY QueueHead,
 PFILE_OBJECT FileObject
);

The SoundFreePendingIrps function traverses a queue of IRPs. For each IRP associated with
the specified file object, the function completes the interrupt request and removes the IRP from
the queue.

Parameters
QueueHead

Pointer to the head of a queue of IRPs.
FileObject

Pointer to a file object.

Return Value
None.

SoundFreePendingIrps
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 149 Windows NT DDK

Comments
The function completes the interrupt request by calling IoCompleteRequest, with a priority boost
argument of IO_NO_INCREMENT.

SoundFreePendingIrps only works for IRP queues created by calling
SoundAddIrpToCancellableQ. It makes each IRP noncancelable before calling
IoCompleteRequest.

Generally, drivers using soundlib.lib do not need to manipulate IRP queues because DPCs in
soundlib.lib handle IRP completion. For drivers that do manipulate IRP queues, the
SoundAddIrpToCancellableQ, SoundRemoveFromCancellableQ,
SoundMoveCancellableQueue, SoundFreePendingIrps, and SoundFreeQ functions are
provided.

SoundFreeQ
VOID
 SoundFreeQ(
 PLIST_ENTRY ListHead,
 NTSTATUS IoStatus
);

The SoundFreeQ function traverses a queue of IRPs. For each IRP, the function completes the
interrupt request and removes the IRP from the queue.

Parameters
ListHead

Pointer to the head of a queue of IRPs.
IoStatus

An NTSTATUS code to use as an IRP completion status. This value, which is placed in each
IRP, is generally either STATUS_SUCCESS or STATUS_CANCELLED.

Return Value
None.

Comments
The function completes the interrupt request by calling IoCompleteRequest, with a priority boost
argument of IO_SOUND_INCREMENT.

SoundFreeQ only works for IRP queues created by calling SoundAddIrpToCancellableQ. It
dequeues entries by calling SoundRemoveFromCancellableQ.

Generally, drivers using soundlib.lib do not need to manipulate IRP queues because DPCs in
soundlib.lib handle IRP completion. For drivers that do manipulate IRP queues, the
SoundAddIrpToCancellableQ, SoundRemoveFromCancellableQ,
SoundMoveCancellableQueue, SoundFreePendingIrps, and SoundFreeQ functions are
provided.

SoundGetBusNumber
NTSTATUS

 SoundGetBusNumber(
 IN OUT INTERFACE_TYPE InterfaceType,
 OUT PULONG BusNumber
);

The SoundGetBusNumber function returns the number of the first bus of the specified bus type.

Parameters
InterfaceType

SoundGetBusNumber
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 150 Windows NT DDK

Type of bus for which to search. INTERFACE_TYPE is defined in ntddk.h.
BusNumber

Address of location to receive the bus number, if found.

Return Value
Returns STATUS_SUCCESS if successful. Otherwise returns
STATUS_DEVICE_DOES_NOT_EXIST.

SoundGetCommonBuffer
NTSTATUS

 SoundGetCommonBuffer(
 IN PDEVICE_DESCRIPTION DeviceDescription,
 IN OUT PSOUND_DMA_BUFFER SoundAutoData
);

The SoundGetCommonBuffer function allocates a buffer for use by waveform devices during
auto-initialize DMA transfers, and maps the buffer so it is accessible to both the processor and the
device.

Parameters
DeviceDescription

Pointer to an initialized DEVICE_DESCRIPTION structure. (For a description of this structure,
see HalGetAdapter.)

SoundAutoData
Pointer to a SOUND_DMA_BUFFER structure. Generally this is the address of the DMABuf
member of a WAVE_INFO structure.

Return Value
Returns one of the following values.

Value Definition
STATUS_SUCCESS Operation succeeded.
STATUS_DEVICE_CONFIGURATION_ERROR Couldn't find adapter.
STATUS_INSUFFICIENT_RESOURCES Not enough memory to allocate buffer.

Comments
The returned buffer is described by the contents of the SOUND_DMA_BUFFER structure.

SoundGetCommonBuffer calls HalGetAdapter to obtain an adapter object and
HalAllocateCommonBuffer to get a buffer. If a buffer of the requested size is not available, a
smaller one is returned. The smallest buffer that can be requested is 4 kilobytes.

After the buffer has been allocated, the function calls IoAllocateMdl and
MmBuildMdlForNonPagedPool to build a memory descriptor list (MDL). A MDL is needed by
soundlib.lib for calls to IoMapTransfer.

If the requested buffer size is large, soundlib.lib might not use the entire buffer. To find out how
much of the buffer is actually used, call SoundGetDMABufferSize.

Prior to being unloaded, the driver must free the allocated buffer space by calling
SoundFreeCommonBuffer.

Drivers calling SoundGetCommonBuffer must include wave.h.

SoundGetDMABufferSize
ULONG

 SoundGetDMABufferSize(
 IN PWAVE_INFO WaveInfo

SoundGetDMABufferSize
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 151 Windows NT DDK

);

The SoundGetDMABufferSize function returns the actual DMA buffer size used for DMA
transfers by the specified waveform device.

Parameters
WaveInfo

Pointer to a WAVE_INFO structure.

Return Value
Buffer size in bytes.

Comments
This function returns the number of bytes that are actually used within the DMA buffer specified
by the WAVE_INFO structure's DMABuf member. If the buffer is large enough, soundlib.lib tries
to set a buffer size corresponding to 1/8 of a second of play or record time.

Generally, DMA buffers for waveform devices are allocated by calling SoundGetCommonBuffer.

Drivers calling SoundGetDMABufferSize must include wave.h.

SoundGetTime
LARGE_INTEGER
 SoundGetTime(
 VOID
);

The SoundGetTime function returns a time value in 100-nanosecond units.

Parameters
None.

Return Value
Returns a time value in 100-nanosecond units.

Comments
This function calls KeQueryPerformanceCounter. Refer to the Kernel-Mode Drivers Reference
for a discussion of KeQueryPerformanceCounter and restrictions on its use.

SoundInitDataItem
VOID

 SoundInitDataItem(
 PMIXER_INFO MixerInfo,
 PMIXER_DATA_ITEM MixerDataItem,
 USHORT Message,
 USHORT Id
);

The SoundInitDataItem function adds a mixer data item to an internal list. Mixer data items
represent mixer lines and controls. When items on the list change state, clients are notified of the
change.

Parameters
MixerInfo

Pointer to a MIXER_INFO structure.
MixerDataItem

Pointer to an empty, globally-allocated MIXER_DATA_ITEM structure.

SoundInitDataItem
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 152 Windows NT DDK

Message
Message to be sent to the client when an item changes. One of the following messages will be
sent:

• MM_MIXM_LINE_CHANGE, for mixer line items.
• MM_MIXM_CONTROL_CHANGE, for mixer control items.

Id
Driver-defined ID value.

Return Value
None.

Comments
The pointer specified by MixerDataItem is added to the ChangedItems list for the specified
MIXER_INFO structure. The driver calls SoundMixerChangedItem when an item on the
ChangedItems list changes state.

Drivers calling SoundInitDataItem must include mixer.h.

SoundInitializeWaveInfo
VOID

 SoundInitializeWaveInfo(
 PWAVE_INFO WaveInfo,
 UCHAR DMAType,
 PSOUND_QUERY_FORMAT_ROUTINE QueryFormat,
 PVOID HwContext
);

The SoundInitializeWaveInfo initializes a WAVE_INFO structure.

Parameters
WaveInfo

Pointer to a WAVE_INFO structure.
DMAType

Type of DMA to use. One of the following enumerated values:
enum {
 SoundNoDMA,
 SoundAutoInitDMA, // Use auto-initialize
 SoundReprogramOnInterruptDMA, // Reprogram on interrupt
 Sound2ChannelDMA // Keep 2 channels going
};
Sound2ChannelDMA is not currently supported in soundlib.lib.

QueryFormat
Pointer to a function of type SOUND_QUERY_FORMAT_ROUTINE.

HwContext
Pointer to a driver-defined structure containing hardware context information. Pointer is stored
in the HwContext member of WAVE_INFO.

Return Value
None.

Comments
Before calling SoundInitializeWaveInfo, the driver must initialize the HwSetupDMA,
HwStopDMA, and HwSetWaveFormat structure members and zero the rest of the structure.

Drivers calling SoundInitializeWaveInfo must include wave.h.

SoundInitMidiIn
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 153 Windows NT DDK

VOID
 SoundInitMidiIn(
 IN OUT PMIDI_INFO pMidi,
 IN PVOID HwContext
);

The SoundInitMidiIn function initializes a MIDI_INFO structure.

Parameters
pMidi

Pointer to a MIDI_INFO structure.
HwContext

Pointer to a driver-defined structure containing hardware context information. The pointer is
stored in the HwContext member of MIDI_INFO.

Return Value
None.

Comments
Before calling SoundInitMidiIn, the driver must initialize the HwStartMidiIn, HwStopMidiIn,
HwMidiRead, and HwMidiOut structure members and zero the rest of the structure.

Drivers calling SoundInitMidiIn must include midi.h.

SoundInitMixerInfo
VOID
 SoundInitMixerInfo(
 IN OUT PMIXER_INFO MixerInfo,
 PMIXER_DD_GET_SET_DATA HwGetLineData,
 PMIXER_DD_GET_SET_DATA HwGetControlData,
 PMIXER_DD_GET_SET_DATA HwGetCombinedControlData,
 PMIXER_DD_GET_SET_DATA HwGetSetControlData
);

The SoundInitMixerInfo function initializes a MIXER_INFO structure.

Parameters
MixerInfo

Pointer to a MIXER_INFO structure.
HwGetLineData

Pointer to a function of type PMIXER_DD_GET_SET_DATA. The pointer is stored in the
HwGetLineData member of MIXER_INFO.

HwGetControlData
Pointer to a function of type PMIXER_DD_GET_SET_DATA. The pointer is stored in the
HwGetControlData member of MIXER_INFO.

HwGetCombinedControlData
Pointer to a function of type PMIXER_DD_GET_SET_DATA. The pointer is stored in the
HwGetCombinedControlData member of MIXER_INFO.

HwGetSetControlData
Pointer to a function of type PMIXER_DD_GET_SET_DATA. The pointer is stored in the
HwGetSetControlData member of MIXER_INFO.

Return Value
None.

SoundInitMixerInfo
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 154 Windows NT DDK

Comments
The function zeros the structure before initializing it.

Drivers calling SoundInitMixerInfo must include mixer.h.

SoundMapPortAddress
PUCHAR

 SoundMapPortAddress(
 INTERFACE_TYPE BusType,
 ULONG BusNumber,
 ULONG PortBase,
 ULONG Length,
 PULONG MemType
);

The SoundMapPortAddress function translates a bus-specific address into the corresponding
system-logical address and then, if the logical address is in memory address space, maps the
address to a virtual address.

Parameters
BusType

Bus type. INTERFACE_TYPE is defined in ntddk.h.
BusNumber

Bus number, as returned from SoundGetBusNumber.
PortBase

Port number.
Length

Number of ports.
MemType

Address of a location to receive a value indicating the memory type. A value of zero indicates
the return value is a memory address. A value of one indicates the return value is an I/O space
address.

Return Value
Returns the base virtual address.

Comments
Use SoundMapPortAddress to obtain addresses that are suitable for use with HAL Port I/O
routines, such as READ_PORT_UCHAR.

If a value of zero is received in the address pointed to by memtype, then the returned virtual
address is a mapped address. In this case the driver must call MmUnmapIoSpace to unmap the
address range, prior to being unloaded.

This function calls HalTranslateBusAddress and MmMapIoSpace.

SoundMidiDispatch
NTSTATUS

 SoundMidiDispatch(
 IN OUT PLOCAL_DEVICE_INFO pLDI,
 IN PIRP pIrp,
 IN PIO_STACK_LOCATION IrpStack
);

The SoundMidiDispatch function is the IRP control code dispatcher for MIDI devices.

Parameters

SoundMidiDispatch
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 155 Windows NT DDK

pLDI
Pointer to a LOCAL_DEVICE_INFO structure.

pIrp
Pointer to an IRP.

IrpStack
Pointer to an I/O stack location.

Return Value
Returns STATUS_SUCCESS if the operation succeeds. Otherwise returns an NTSTATUS error
code.

Comments
Kernel-mode MIDI device drivers using soundlib.lib place the address of this function in the
DispatchRoutine member of a SOUND_DEVICE_INIT structure. The function is called by
soundlib.lib's main dispatcher, SoundDispatch.

The function processes the following IRP control codes:

IRP_MJ_CLEANUP
IRP_MJ_CLOSE
IRP_MJ_CREATE
IRP_MJ_DEVICE_CONTROL
IRP_MJ_READ

For IRP_MJ_DEVICE_CONTROL, the function processes the following I/O control codes:

IOCTL_MIDI_GET_CAPABILITIES
IOCTL_MIDI_GET_STATE
IOCTL_MIDI_PLAY
IOCTL_MIDI_SET_STATE

See the Kernel-Mode Drivers Design Guide for descriptions of PIRP and
PIO_STACK_LOCATION types, along with IRP control codes and I/O control codes.

SoundMidiInDeferred
VOID

 SoundMidiInDeferred(
 IN PKDPC pDpc,
 IN PDEVICE_OBJECT pDeviceObject,
 IN OUT PIRP pIrpDeferred,
 IN OUT PVOID Context
);

The SoundMidiInDeferred function is the DPC function that is provided by soundlib.lib for MIDI
input devices.

Parameters
pDpc

Pointer to a DPC object.
pDeviceObject

Pointer to a device object.
pIrpDeferred

Pointer to an IRP. (Not used by SoundMidiInDeferred. See Comments section below.)
Context

Pointer to context information. (Not used by SoundMidiInDeferred. See Comments section
below.)

Return Value

SoundMidiInDeferred
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 156 Windows NT DDK

None.

Comments
Drivers using soundlib.lib should specify this function's address as the DeferredRoutine member
of each MIDI input device's SOUND_DEVICE_INIT structure. SoundCreateDevice passes the
address to IoInitializeDpcRequest.

A driver causes SoundMidiInDeferred to be called by calling IoRequestDPC from its ISR. The
driver should specify NULL for the Irp and Context parameters to IoRequestDPC, because
SoundMidiInDeferred does not use them.

SoundMixerChangedItem
VOID

 SoundMixerChangedItem(
 IN OUT PMIXER_INFO MixerInfo,
 IN OUT PMIXER_DATA_ITEM MixerItem
);

The SoundMixerChangedItem function is called when an item on a mixer's ChangedItems list
changes state.

Parameters
MixerInfo

Pointer to a mixer's MIXER_INFO structure.
MixerItem

Pointer to a MIXER_DATA_ITEM structure.

Return Value
None.

Comments
The SoundMixerChangedItem function updates the LastSet member of the
MIXER_DATA_ITEM structure and moves the structure pointer to the head of the ChangedItems
list in MIXER_INFO. It then traverses the queue pointed to by NotifyQueue in MIXER_INFO,
calling IoCompleteRequest for each IRP in the queue and thereby delivering notification
messages to each requesting client.

Drivers calling SoundMixerChangedItem must include mixer.h.

SoundMixerDispatch
NTSTATUS

 SoundMixerDispatch(
 IN OUT PLOCAL_DEVICE_INFO pLDI,
 IN PIRP pIrp,
 IN PIO_STACK_LOCATION IrpStack
);

The SoundMixerDispatch function is the IRP control code dispatcher for mixer devices.

Parameters
pLDI

Pointer to a LOCAL_DEVICE_INFO structure.
pIrp

Pointer to an IRP structure.
IrpStack

Pointer to an IO_STACK_LOCATION structure.

SoundMixerDispatch
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 157 Windows NT DDK

Return Value
Returns STATUS_SUCCESS if the operation succeeds. Otherwise returns an NTSTATUS error
code.

Comments
Kernel-mode mixer device drivers using soundlib.lib place the address of this function in the
DispatchRoutine member of a SOUND_DEVICE_INIT structure. The function is called by
soundlib.lib's main dispatcher, SoundDispatch.

The SoundMixerDispatch function processes the following IRP control codes:

IRP_MJ_CLEANUP
IRP_MJ_CLOSE
IRP_MJ_CREATE
IRP_MJ_DEVICE_CONTROL
IRP_MJ_WRITE

For IRP_MJ_DEVICE_CONTROL, the function processes the following I/O control codes:

IOCTL_MIX_GET_CONFIGURATION
IOCTL_MIX_GET_CONTROL_DATA
IOCTL_MIX_GET_LINE_DATA
IOCTL_MIX_REQUEST_NOTIFY

SoundMoveCancellableQueue
VOID

 SoundMoveCancellableQueue(
 IN OUT PLIST_ENTRY From,
 IN OUT PLIST_ENTRY To
);

The SoundMoveCancellableQueue function moves a queue of cancelable IRPs to another
queue.

Parameters
From

Pointer to a queue of IRPs to be moved.
To

Pointer to an empty queue into which IRPs are to be moved.

Return Value
None.

Comments
The SoundMoveCancellableQueue function initializes the To queue by calling
InitializeListHead.

Generally, drivers using soundlib.lib do not need to manipulate IRP queues because DPCs in
soundlib.lib handle IRP completion. For drivers that do manipulate IRP queues, the
SoundAddIrpToCancellableQ, SoundRemoveFromCancellableQ,
SoundMoveCancellableQueue, SoundFreePendingIrps, and SoundFreeQ functions are
provided.

SoundNoVolume
VOID

 SoundNoVolume(

SoundNoVolume
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 158 Windows NT DDK

 PLOCAL_DEVICE_INFO pLDI
);

The SoundNoVolume function should be used as the HwSetVolume member of the
SOUND_DEVICE_INIT structure associated with a device that either has no volume setting
hardware or whose volume is controlled by a mixer device.

Parameters
pLDI

Pointer to the device's LOCAL_DEVICE_INFO structure.

Return Value
None.

Comments
The SoundNoVolume function contains only a return statement.

SoundOpenDevicesKey
NTSTATUS

SoundOpenDevicesKey(
 IN PWSTR RegistryPathName,
 OUT PHANDLE DevicesKey
);

The SoundOpenDevicesKey function opens the Devices subkey under the specified registry
path. If the Devices subkey does not exist, it is created.

Parameters
RegistryPathName

Pointer to a string representing the registry path to the device subkey. Use the path name
created by either SoundEnumSubkeys or SoundSaveRegistryPath.

DevicesKey
Address of a location to receive a handle to the Devices subkey.

Return Value
Returns STATUS_SUCCESS if the operation succeeds. Otherwise returns an NTSTATUS error
code.

Comments
A driver that calls SoundSaveDeviceName to save a device name in the registry must remove
the created \Devices key, along with all device name subkeys, prior to being unloaded. To
remove the \Devices key, a driver should:

• Call SoundOpenDevicesKey to obtain a handle to the \Devices key.
• Call ZwDeleteKey to delete the key.
• Call ZwClose to close the key handle.

SoundPeakMeter
BOOLEAN

 SoundPeakMeter(
 IN PWAVE_INFO WaveInfo,
 OUT PLONG Amplitudes
);

The SoundPeakMeter function returns the peak amplitude value currently contained in the DMA
buffer for the specified waveform device.

SoundPeakMeter
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 159 Windows NT DDK

Parameters
WaveInfo

Pointer to a WAVE_INFO structure.
Amplitudes

Pointer to a longword. Amplitude values are returned in the longword. The lower word contains
the left channel value, and the upper word contains the right channel value. Returned values
are between 0x0 and 0xFFFF.

Return Value
Always returns TRUE.

Comments
The SoundPeakMeter function is typically called from a mixer driver's HwGetControlData
function. See MIXER_INFO.

Drivers calling SoundPeakMeter must include wave.h.

SoundRemoveFromCancellableQ
PIRP

 SoundRemoveFromCancellableQ(
 PLIST_ENTRY QueueHead
);

The SoundRemoveFromCancellableQ function removes an IRP from the head of the specified
IRP queue, makes the IRP noncancelable, and returns its address.

Parameters
QueueHead

Pointer to the head of a queue of IRPs.

Return Value
Address of an IRP structure containing the removed IRP.

Comments
Generally, drivers using soundlib.lib do not need to manipulate IRP queues because DPCs in
soundlib.lib handle IRP completion. For drivers that do manipulate IRP queues, the
SoundAddIrpToCancellableQ, SoundRemoveFromCancellableQ,
SoundMoveCancellableQueue, SoundFreePendingIrps, and SoundFreeQ functions are
provided.

SoundReportResourceUsage
NTSTATUS

 SoundReportResourceUsage(
 IN PDEVICE_OBJECT DeviceObject,
 IN INTERFACE_TYPE BusType,
 IN ULONG BusNumber,
 IN PULONG InterruptNumber OPTIONAL,
 IN KINTERRUPT_MODE InterruptMode,
 IN BOOLEAN InterruptShareDisposition,
 IN PULONG DmaChannel OPTIONAL,
 IN PULONG FirstIoPort OPTIONAL,
 IN ULONG IoPortLength
);

The SoundReportResourceUsage function reserves hardware resources for use by the
specified device or driver. This function does not allow reservation of resources already reserved

SoundReportResourceUsage
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 160 Windows NT DDK

for another device or driver.

Parameters
DeviceObject

Pointer to either a DEVICE_OBJECT or DRIVER_OBJECT structure. Represents the device or
driver for which resources will be reserved.

BusType
Type of bus the device is on. INTERFACE_TYPE is defined in ntddk.h.

BusNumber
Number of the bus the device is on.

InterruptNumber
Pointer to the interrupt number, or NULL if no interrupt.

InterruptMode
Interrupt mode (Latched or LevelSensitive). Ignored if InterruptNumber is NULL.
KINTERRUPT_MODE is defined in ntddk.h.

InterruptShareDisposition
TRUE if interrupt can be shared, FALSE otherwise. Ignored if InterruptNumber is NULL.

DmaChannel
Pointer to the device's DMA channel, or NULL if there is no DMA channel.

FirstIoPort
Pointer to the device's first I/O port address, or NULL if there are no I/O ports.

IoPortLength
Number of bytes of I/O space the device uses, starting at FirstIoPort. Ignored if FirstIoPort is
NULL.

Return Value
Returns one of the following values.

Value Definition
STATUS_SUCCESS Success.
STATUS_DEVICE_CONFIGURATION_ERROR Resources already assigned.
STATUS_INSUFFICIENT_RESOURCES Resources unavailable.

Comments
Before attempting to access device hardware, call SoundReportResourceUsage to ensure the
resources you intend to use are not already assigned to another device.

You can associate resources with either the driver object or with one of the device objects created
by SoundCreateDevice. If the driver supports multiple cards, you must associate resources with
device objects.

Each time you call SoundReportResourceUsage for a particular device object or driver object,
you override the resource reservation made with any previous call for the same object.

Typically, a driver acquires resources for each device in turn, and then calls
SoundReportResourceUsage a final time to declare (to the rest of the system) all the resources
used by the card instance.

To free reserved resources, call SoundFreeDevice.

SoundSaveDeviceName
NTSTATUS

 SoundSaveDeviceName(
 IN PWSTR RegistryPathName,
 IN PLOCAL_DEVICE_INFO pLDI
);

SoundSaveDeviceName
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 161 Windows NT DDK

The SoundSaveDeviceName function writes a device's name and type into the registry.

Parameters
RegistryPathName

Pointer to a string representing the registry path to the device subkey. Use the path name
created by either SoundEnumSubkeys or SoundSaveRegistryPath.

pLDI
Pointer to the device's LOCAL_DEVICE_INFO structure.

Return Value
Returns one of the following values.

Value Definition
STATUS_SUCCESS Success.
STATUS_INSUFFICIENT_RESOURCES Couldn't create a device name.

Comments
Under the specified registry path, the SoundSaveDeviceName function locates the \Devices
subkey. Under this subkey, the function uses the device's name as a value name and uses the
device's type as the value to associate with the name. The function creates a device name from
the PrototypeName member of the device's SOUND_DEVICE_INIT structure. It obtains the
device type from the DeviceType member of the passed LOCAL_DEVICE_INFO structure.

After the function is called, the registry should contain the entry
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters\DeviceNumber\Devices\
where the value of DeviceName is the device type.

Drivers that call SoundSaveDeviceName must remove the saved device name from the registry
prior to being unloaded. Refer to SoundOpenDevicesKey.

SoundSaveDeviceVolume
VOID

 SoundSaveDeviceVolume(
 PLOCAL_DEVICE_INFO pLDI,
 PWSTR KeyName
);

The SoundSaveDeviceVolume function writes both left and right channel volume settings into
the registry.

Parameters
pLDI

Pointer to a LOCAL_DEVICE_INFO structure.
KeyName

The name of the registry subkey under which the volume setting is to be stored. The values are
retrieved from the LeftVolumeName and RightVolumeName members of the structure
pointed to by the DeviceInit member of pLDI.

Return Value
None.

Comments
Left and right volume values are obtained from the volume member of the
LOCAL_DEVICE_INFO structure. The names associated with these volumes are obtained from
the SOUND_DEVICE_INIT structure pointed to by the LOCAL_DEVICE_INFO structure.

Call the SoundSaveDeviceVolume function when the system shuts down or when the driver is
unloaded. Do not use this function if the volume is controlled by a mixer.

SoundSaveDeviceVolume
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 162 Windows NT DDK

SoundSaveRegistryPath
NTSTATUS

 SoundSaveRegistryPath(
 IN PUNICODE_STRING RegistryPathName,
 OUT PWSTR *SavedString
);

The SoundSaveRegistryPath function stores the specified registry path name, appends the
\Parameters subkey to the name string, and returns a pointer to the stored string.

Parameters
RegistryPathName

Pointer to a registry path name. Typically, this is the path name received by the driver's
DriverEntry function.

SavedString
Address of a location to receive a pointer to the new string.

Comments
Drivers use the returned path name when calling soundlib.lib functions that require a registry path
name as input.

Prior to being unloaded, the driver must deallocate the buffer pointed to by SavedString.

The SoundSaveRegistryPath function is typically used by drivers that support only a single
hardware device. Drivers supporting multiple devices call SoundEnumSubkeys, which appends
\Parameters\DeviceNum to the path name.

SoundSetErrorCode
NTSTATUS

 SoundSetErrorCode(
 IN PWSTR RegistryPath,
 IN ULONG Value
);

The SoundSetErrorCode function assigns a value to the "Configuration Error" value name in the
specified registry path.

Parameters
RegistryPath

Pointer to a full path to a registry key.
Value

Value to set. The value is stored in the registry as a REG_DWORD type.

Return Value
Returns STATUS_SUCCESS if the operation succeeds. Otherwise returns an NTSTATUS error
code.

SoundSetLineNotify
VOID

 SoundSetLineNotify(
 PLOCAL_DEVICE_INFO pLDI,
 PSOUND_LINE_NOTIFY LineNotify
);

The SoundSetLineNotify function specifies a function to be called when the status of the
specified device changes.

SoundSetLineNotify
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 163 Windows NT DDK

Parameters
pLDI

Pointer to the LOCAL_DEVICE_INFO structure of the device with which the notification
function is to be associated.

LineNotify
Pointer to a notification function. Type is PSOUND_LINE_NOTIFY.

Return Value
None.

Comments
The SoundSetLineNotify function is called by mixer drivers, so they can receive notification of
changes to devices associated with mixer lines.

A separate notification function can be registered for each device created with
SoundCreateDevice, but code in soundlib.lib calls notification functions only for waveform
devices and MIDI synthesizers.

If a driver has registered a notification function by calling SoundSetLineNotify, then soundlib.lib
calls the function whenever the status of the device changes (that is, the device starts or stops).

Typically, the driver uses the notification function to send commands to mixer hardware, if
necessary, and to call SoundMixerChangedItem, which queues the change and notifies clients.

Drivers calling SoundSetLineNotify must include mixer.h.

SoundSetShareAccess
NTSTATUS

 SoundSetShareAccess(
 IN OUT PLOCAL_DEVICE_INFO pLDI,
 IN PIO_STACK_LOCATION IrpStack
);

The SoundSetShareAccess function sets a specified device access by calling
IoSetShareAccess.

Parameters
pLDI

Pointer to a LOCAL_DEVICE_INFO structure.
IrpStack

Pointer to an IO_STACK_LOCATION structure that contains the desired access.

Return Value
Returns STATUS_SUCCESS if the requested access is granted. Otherwise returns
STATUS_ACCESS_DENIED or STATUS_DEVICE_BUSY.

Comments
This function can only be called when processing an IRP_MJ_CREATE message, because it
references message-specific contents of IrpStack. Drivers using the dispatch routines supplied by
soundlib.lib do not need to call this function.

SoundSetVolumeControlId
VOID

 SoundSetVolumeControlId(
 PLOCAL_DEVICE_INFO pLDI,
 UCHAR VolumeControlId
);

SoundSetVolumeControlId
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 164 Windows NT DDK

The SoundSetVolumeControlId function assigns the specified volume control ID to the specified
device.

Parameters
pLDI

Pointer to the LOCAL_DEVICE_INFO structure of the device to which the volume control ID is
to be assigned.

VolumeControlId
A driver-defined volume control ID value.

Return Value
None.

Comments
The SoundSetVolumeControlId function stores the specified value in the VolumeControlID
member of the LOCAL_DEVICE_INFO structure. The value is driver-defined and enables the
driver to associate a device's volume settings with mixer settings. The volume ID is passed as
input to functions pointed to by the HwGetControlData, HwGetCombinedControlData, and
HwSetControlData members of MIXER_INFO.

SoundTestWaveDevice
int
 SoundTestWaveDevice(
 IN PDEVICE_OBJECT pDO
);

The SoundTestWaveDevice function initiates a short DMA transfer to determine if the specified
waveform device's interrupt number and DMA channel number are set correctly.

Parameters
pDO

Pointer to the waveform device's device object. To obtain a device object, call
SoundCreateDevice.

Return Value
Returns one of the following values.

Value Definition
0 Operation succeeded.
1 Interrupt number is invalid.
2 DMA channel number is invalid.

Comments
Use the SoundTestWaveDevice function only if no other means for establishing interrupt and
DMA channel numbers are available.

This function only works for devices that perform auto-initialize DMA transfers.

Drivers calling SoundTestWaveDevice must include wave.h.

SoundVolumeNotify
VOID

 SoundVolumeNotify(
 IN OUT PLOCAL_DEVICE_INFO pLDI
);

SoundVolumeNotify
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 165 Windows NT DDK

The SoundVolumeNotify function is used by mixer drivers to notify clients when a device's
volume changes.

Parameters
pLDI

Pointer to a LOCAL_DEVICE_INFO structure representing the device whose volume has
changed.

Return Value
None.

Comments
The function traverses the IRP queue pointed to by the VolumeQueue member of the
LOCAL_DEVICE_INFO structure, calling IoCompleteRequest for each queue entry.

Mixer drivers only call this function if volume is controlled in software. For an example, see
sndsys.sys, the kernel-mode driver for the Windows Sound System synthesizer. Sources for this
driver are in \src\mmedia\sndsys\driver.

SoundWaveDeferred
VOID

 SoundWaveDeferred(
 PKDPC pDpc,
 PDEVICE_OBJECT pDeviceObject,
 PIRP pIrp,
 PVOID Context
);

The SoundWaveDeferred function is the DPC function that is provided by soundlib.lib for
waveform input and output devices.

Parameters
pDpc

Pointer to a DPC object.
pDeviceObject

Pointer to a device object.
pIrpDeferred

Pointer to an IRP. (Not used by SoundWaveDeferred. See Comments section below.)
Context

Pointer to context information. (Not used by SoundWaveDeferred. See Comments section
below.)

Return Value
None.

Comments
Drivers using soundlib.lib should specify this routine's address as the DeferredRoutine member
of each waveform device's SOUND_DEVICE_INIT structure. SoundCreateDevice passes to the
address to IoInitializeDpcRequest.

A driver causes SoundWaveDeferred to be called by calling IoRequestDPC from its ISR. The
driver should specify NULL for the Irp and Context parameters to IoRequestDPC, because
SoundWaveDeferred does not use them.

SoundWaveDispatch
NTSTATUS

 SoundWaveDispatch(

SoundWaveDispatch
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 166 Windows NT DDK

 IN OUT PLOCAL_DEVICE_INFO pLDI,
 IN PIRP pIrp,
 IN PIO_STACK_LOCATION IrpStack
);

The SoundWaveDispatch function is the IRP control code dispatcher for waveform devices.

Parameters
pLDI

Pointer to a LOCAL_DEVICE_INFO structure.
pIrp

Pointer to an IRP structure.
IrpStack

Pointer to an IO_STACK_LOCATION structure.

Return Value
Returns STATUS_SUCCESS if the operation succeeds. Otherwise returns an NTSTATUS error
code.

Comments
Kernel-mode waveform device drivers using soundlib.lib place the address of the
SoundWaveDispatch function in the DispatchRoutine member of a SOUND_DEVICE_INIT
structure. The function is called by soundlib.lib's main dispatcher, SoundDispatch.

The function processes the following IRP control codes:

IRP_MJ_CLEANUP
IRP_MJ_CLOSE
IRP_MJ_CREATE
IRP_MJ_DEVICE_CONTROL
IRP_MJ_READ
IRP_MJ_WRITE

For IRP_MJ_DEVICE_CONTROL, the function processes the following I/O control codes:

IOCTL_SOUND_GET_CHANGED_VOLUME
IOCTL_WAVE_GET_CAPABILITIES
IOCTL_WAVE_GET_PITCH
IOCTL_WAVE_GET_PLAYBACK_RATE
IOCTL_WAVE_GET_POSITION
IOCTL_WAVE_GET_POSITION
IOCTL_WAVE_GET_STATE
IOCTL_WAVE_GET_VOLUME
IOCTL_WAVE_QUERY_FORMAT
IOCTL_WAVE_SET_FORMAT
IOCTL_WAVE_SET_LOW_PRIORITY
IOCTL_WAVE_SET_PITCH
IOCTL_WAVE_SET_PLAYBACK_RATE
IOCTL_WAVE_SET_STATE

SoundWriteRegistryDWORD
NTSTATUS

 SoundWriteRegistryDWORD(
 IN PCWSTR RegistryPath,
 IN PCWSTR ValueName,

SoundWriteRegistryDWORD
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 167 Windows NT DDK

 IN ULONG Value
);

The SoundWriteRegistryDWORD function assigns the specified value to the specified value
name in the registry, at the specified registry key.

Parameters
RegistryPath

Pointer to full path to a registry key.
ValueName

Pointer to a value name string.
Value

Value to assign to ValueName. The value is stored as a REG_DWORD type.

Return Value
Returns STATUS_SUCCESS if the operation succeeds. Otherwise returns an NTSTATUS error
code.

SynthCleanup
VOID

 SynthCleanup(
 IN PGLOBAL_SYNTH_INFO pGDI
);

The SynthCleanup function deallocates synthesizer resources.

Parameters
pGDI

Pointer to a GLOBAL_SYNTH_INFO structure.

Return Value
None.

Comments
The SynthCleanup function calls MmUnmapIoSpace.

Drivers calling SynthCleanup must include synthdrv.h.

SynthInit
NTSTATUS

 SynthInit(
 IN PDRIVER_OBJECT pDriverObject,
 IN PWSTR RegistryPathName,
 IN PGLOBAL_SYNTH_INFO pGDI,
 IN ULONG SynthPort,
 IN BOOLEAN InterruptConnected,
 IN INTERFACE_TYPE BusType,
 IN ULONG BusNumber,
 IN PMIXER_DATA_ITEM MidiOutItem,
 IN UCHAR VolumeControlId,
 IN BOOLEAN Multiple,
 IN SOUND_DISPATCH_ROUTINE *DevCapsRoutine
);

The SynthInit function creates a device object for a MIDI synthesizer (AdLib or OPL3) and
performs additional initialization tasks.

SynthInit
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 168 Windows NT DDK

Parameters
pDriverObject

Address of a location to receive a pointer to a DEVICE_OBJECT structure, if the call succeeds.
RegistryPathName

Pointer to a string representing the registry path to the device subkey. Use the path name
created by either SoundEnumSubkeys or SoundSaveRegistryPath.

pGDI
Pointer to a GLOBAL_SYNTH_INFO structure.

SynthPort
Port address.

InterruptConnected
TRUE if interrupt is connected, FALSE otherwise.

BusType
Bus type. INTERFACE_TYPE is defined in ntddk.h.

BusNumber
Bus number.

MidiOutItem
Not used. Should be set to NULL.

VolumeControlId
A driver-defined volume control ID value.

Multiple
TRUE if indexed device names are allowed, FALSE otherwise.

DevCapsRoutine
Pointer to a driver-defined function that returns device capabilities. The function type is
SOUND_DISPATCH_ROUTINE. To read about functions that return device capabilities, refer
to the description of the DevCapsRoutine member of the SOUND_DEVICE_INIT structure.

Return Value
Returns STATUS_SUCCESS if the operation succeeds. Otherwise returns an NTSTATUS error
code.

Comments
You do not create a SOUND_DEVICE_INIT structure for a synthesizer device, because
soundlib.lib creates one internally. It also provides an internal dispatch routine and exclusion
routine.

The SynthInit function performs the following operations, in order:

1. Calls SoundCreateDevice to create a device object and a LOCAL_DEVICE_INFO structure.
2. Sets default volume values for left and right channels in the Volume member of the device's

LOCAL_DEVICE_INFO structure.
3. Calls SoundReportResourceUsage to obtain system resources.
4. Calls SoundMapPortAddress to map port addresses.
5. Attempts to reference the synthesizer hardware to verify that it exists at the specified address.
6. Calls SoundSaveDeviceName to write the device name in the registry.
7. Stores the specified volume control ID in the device's LOCAL_DEVICE_INFO structure.
8. Determines if the synthesizer chip is OPL3-compatible.
9. Initializes the synthesizer hardware to silence.

Setting Multiple to FALSE causes SoundCreateDevice to be called with the
SOUND_CREATION_NO_NAME_RANGE flag set. Use FALSE if the port address is 0x388.

Synthesizer interrupts are not handled by soundlib.lib. If the device supports a hardware interrupt,
the driver must provide ISR code to handle it.

SynthInit
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 169 Windows NT DDK

Drivers calling SynthInit must include synthdrv.h.

Structures and Types, soundlib.lib
This section describes the structures and types available to kernel-mode audio drivers using
soundlib.lib. The structures and types are defined in soundlib.h, devices.h, wave.h, midi.h,
mixer.h, and synthdrv.h.

GLOBAL_SYNTH_INFO
typedef struct _GLOBAL_SYNTH_INFO {
 ULONG Key;
#define SYNTH_KEY (*(ULONG *)"Syn ")
 INTERFACE_TYPE BusType;
 ULONG BusNumber;
 KMUTEX MidiMutex;
 ULONG MemType;
 PDEVICE_OBJECT DeviceObject;
 PDRIVER_OBJECT DriverObject;
 SOUND_DISPATCH_ROUTINE *DevCapsRoutine;
 UCHAR DeviceInUse;
 volatile BOOLEAN InterruptFired; // Interrupt fired?
 BOOLEAN IsOpl3; // It's an OPL3
 SYNTH_HARDWARE Hw; // Hardware specific stuff
} GLOBAL_SYNTH_INFO, *PGLOBAL_SYNTH_INFO;

The GLOBAL_SYNTH_INFO structure contains context information for a mixer device.

Members
Key

Internal only, for debugging. Should be "Syn ".
BusType

Bus type. INTERFACE_TYPE is defined in ntddk.h.
BusNumber

Bus number.
MidiMutex

Internal only. Mutex object used by soundlib.lib's exclusion routine.
MemType

Memory type returned by SoundMapPortAddress.
DeviceObject

Pointer to device object returned by SoundCreateDevice.
DriverObject

Pointer to driver object received by DriverEntry.
DevCapsRoutine

Pointer to a driver-defined function that returns device capabilities. The function type is
SOUND_DISPATCH_ROUTINE.

DeviceInUse
Internal only. Indicates device status.

InterruptFired
Set by driver if interrupt fired. Not set by soundlib.lib.

IsOpl3
Set if synthesizer is OPL3-compatible.

Hw
Hardware information. Member type is SYNTH_HARDWARE.

GLOBAL_SYNTH_INFO
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 170 Windows NT DDK

Comments
Allocate a GLOBAL_SYNTH_INFO structure from the nonpaged memory pool by calling
ExAllocatePool, then zero it by calling RtlZeroMemory. The structure is initialized by code in
SynthInit.

LOCAL_DEVICE_INFO
typedef struct _LOCAL_DEVICE_INFO {
 ULONG Key;
#define LDI_WAVE_IN_KEY (*(ULONG *)"LDWi")
#define LDI_WAVE_OUT_KEY (*(ULONG *)"LDWo")
#define LDI_MIDI_IN_KEY (*(ULONG *)"LDMi")
#define LDI_MIDI_OUT_KEY (*(ULONG *)"LDMo")
#define LDI_AUX_KEY (*(ULONG *)"LDAx")
#define LDI_MIX_KEY (*(ULONG *)"LDMx")
 PVOID pGlobalInfo;
 UCHAR DeviceType;
 UCHAR DeviceNumber;
 UCHAR DeviceIndex;
 UCHAR CreationFlags;
#define SOUND_CREATION_NO_NAME_RANGE ((UCHAR)0x01)
#define SOUND_CREATION_NO_VOLUME ((UCHAR)0x02)
 BOOLEAN PreventVolumeSetting;
 UCHAR VolumeControlId;
 PSOUND_LINE_NOTIFY LineNotify;
#ifndef SOUNDLIB_NO_OLD_VOLUME
 WAVE_DD_VOLUME Volume;
#endif
#ifdef VOLUME_NOTIFY
 LIST_ENTRY VolumeQueue;
 struct _LOCAL_DEVICE_INFO * MixerDevice;
#endif
#ifdef MASTERVOLUME
 BOOLEAN MasterVolume;
#endif
 BOOLEAN VolumeChanged;
 PVOID DeviceSpecificData;
 PVOID HwContext;
 ULONG State;
 PCSOUND_DEVICE_INIT DeviceInit;
} LOCAL_DEVICE_INFO, *PLOCAL_DEVICE_INFO;

Within soundlib.lib, the LOCAL_DEVICE_INFO structure is used as the device extension for each
device object created by IoCreateDevice. Device objects and device extensions are described in
the Kernel-Mode Drivers Design Guide. The LOCAL_DEVICE_INFO structure is defined in
devices.h. One LOCAL_DEVICE_INFO structure exists for each device created by
SoundCreateDevice.

Members
Key

Internal only. Used for debugging. The value is copied from the Key member of
SOUND_DEVICE_INIT.

pGlobalInfo
Pointer to a driver-defined structure containing device object-specific data. Specified by the
pGDI parameter of SoundCreateDevice.

DeviceType
Copied from the DeviceType member of the SOUND_DEVICE_INIT structure.

LOCAL_DEVICE_INFO
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 171 Windows NT DDK

DeviceNumber
Contains number to append to the end of the device name. Set to 0xFF within
SoundCreateDevice if the SOUND_CREATION_NO_NAME_RANGE flag is specified.

DeviceIndex
For use by the driver. Contains the i parameter specified with SoundCreateDevice.

CreationFlags
Contains flags passed as CreationFlags parameter of SoundCreateDevice.

PreventVolumeSetting
Internal only. Used to prevent volume being shared for devices opened without shared write
access. Set by SoundSetShareAccess.

VolumeControlId
Set by SoundSetVolumeControlId.

LineNotify
Address of a driver-supplied function called when a line status changes. The function type is
PSOUND_LINE_NOTIFY. Set by SoundSetLineNotify.

Volume
Contains the device's volume setting.

VolumeQueue
IRP queue for SOUND_IOCTL_GET_CHANGED_VOLUME requests not completed.

MixerDevice
If the device object represents a mixer device, this member points to an additional
LOCAL_DEVICE_INFO structure for the mixer device. This member must be set by the driver's
mixer initialization code. It is not set by soundlib.lib.

MasterVolume
Set if this device is the master volume control device.

VolumeChanged
Internal only. If there is no mixer device, soundlib.lib sets this after a volume change, to
indicate that volume settings need to be updated in the registry before system shutdown.

DeviceSpecificData
Contains the value passed as the DeviceSpecificData parameter of SoundCreateDevice.

HwContext
Contains the value passed as the pHw parameter of SoundCreateDevice.

State
Internal only Used by soundlib.lib to store the current device state.

DeviceInit
Contains the value passed as the DeviceInit parameter to SoundCreateDevice.

Comments
Drivers do not allocate LOCAL_DEVICE_INFO structures locally. When a driver calls
SoundCreateDevice, a pointer to a DEVICE_OBJECT structure is returned. The structure's
DeviceExtension member is used as the device's LOCAL_DEVICE_INFO structure.

MIDI_INFO
typedef struct _MIDI_INFO
{
 ULONG Key;
#define MIDI_INFO_KEY (*(ULONG *)"Midi")
 KSPIN_LOCK DeviceSpinLock;
 #if DBG
 BOOLEAN LockHeld;
 #endif
 LARGE_INTEGER RefTime;
 LIST_ENTRY QueueHead;

MIDI_INFO
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 172 Windows NT DDK

 PVOID HwContext;
 PMIDI_INTERFACE_ROUTINE HwStartMidiIn, HwStopMidiIn;
 BOOLEAN (* HwMidiRead)(struct _MIDI_INFO *, PUCHAR);
 VOID (* HwMidiOut)(struct _MIDI_INFO *, PUCHAR, int);
 BOOLEAN fMidiInStarted;
 UCHAR InputPosition;
 UCHAR InputBytes;
 UCHAR MidiInputByte[64];
} MIDI_INFO, *PMIDI_INFO;

The MIDI_INFO structure contains context information for an external MIDI device.

Members
Key

Internal only, for debugging. Should be "Midi".
DeviceSpinLock

Internal only. Used for DPC synchronization.
LockHeld

Internal only. Used for debugging.
RefTime

Used by soundlib.lib to store the start time of an I/O operation, as reference for time stamps.
QueueHead

Internal only. Points to a buffer queue for MIDI input requests.
HwContext

Pointer to a driver-defined structure containing device-specific hardware information. Typically
used by functions pointed to by the HwStartMidiIn, HwStopMidiIn, HwMidiRead, and
HwMidiOut members.

HwStartMidiIn
Pointer to a driver-supplied function that programs the MIDI hardware to start recording. The
function type is MIDI_INTERFACE_ROUTINE.
The function is called when SoundMIDIDispatch receives a IOCTL_MIDI_SET_STATE
command. See \src\mmedia\soundlib\midi.c.

HwStopMidiIn
Pointer to a driver-supplied function that programs the MIDI hardware to stop recording. The
function type is MIDI_INTERFACE_ROUTINE.
The function is called when SoundMIDIDispatch receives a IRP_MJ_CLEANUP command.
For more information, see \src\mmedia\soundlib\midi.c.

HwMidiRead
Pointer to a driver-supplied function that reads one input byte. This operation might only
consist of fetching the next byte from a buffer that was filled by an ISR. (An example is
MPU401 support in sndblst.sys.) The function type is:
BOOLEAN (* HwMidiRead)(struct _MIDI_INFO *, PUCHAR)

The _MIDI_INFO* parameter points to a MIDI_INFO structure and the PUCHAR parameter
receives the read byte. The function returns TRUE if a byte was read, and FALSE otherwise.
The function is called when SoundMIDIDispatch receives a IRP_MJ_READ command. For
more information, see \src\mmedia\soundlib\midi.c.
This function executes at an IRQL of DISPATCH_LEVEL, so it cannot be pageable and it
cannot reference pageable code or data. Also, the only synchronization method it can use is
calling KeStallExecutionProcessor.

HwMidiOut
Pointer to a driver-supplied function that commands the MIDI hardware to write a string of
bytes. Function type is:
VOID (* HwMidiOut)(struct _MIDI_INFO *, PUCHAR, int)

MIDI_INFO
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 173 Windows NT DDK

The first parameter points to a MIDI_INFO structure, the second parameter points to a mapped
buffer of bytes, and the third parameter contains the buffer size.
The function is called when SoundMIDIDispatch receives a IOCTL_MIDI_PLAY command.
For more information, see \src\mmedia\soundlib\midi.c.

fMidiInStarted
Internal only. Indicates a MIDI input operation is in progress.

InputPosition
Internal only. Pointer to an internal input buffer.

InputBytes
Internal only. Count of bytes in internal input buffer.

MidiInputByte
Internal only. Pointer to internal input buffer.

Comments
A single MIDI_INFO structure can be used to support simultaneous MIDI input and output.
MIDI_INFO is defined in midi.h.

Allocate a MIDI_INFO structure from the nonpaged memory pool by calling ExAllocatePool, then
zero it by calling RtlZeroMemory. To initialize a MIDI_INFO structure, call SoundInitMidiIn.

To create a MIDI device object, call SoundCreateDevice and specify a MIDI_INFO structure
pointer for the DeviceSpecificData parameter.

MIDI_INTERFACE_ROUTINE
typedef BOOLEAN MIDI_INTERFACE_ROUTINE(struct _MIDI_INFO *);

MIDI_INTERFACE_ROUTINE is a type definition for functions that send commands to MIDI
hardware.

Parameters
_MIDI_INFO*

Pointer to a MIDI_INFO structure.

Comments
Drivers using soundlib.lib define functions modeled on this type and place their addresses in the
HwStartMidiIn and HwStopMidiIn members of a WAVE_INFO structure.

MIXER_DATA_ITEM
typedef struct _MIXER_DATA_ITEM {
 LIST_ENTRY Entry;
 LARGE_INTEGER LastSet;
 USHORT Message;
 USHORT Id;
} MIXER_DATA_ITEM, *PMIXER_DATA_ITEM;

The MIXER_DATA_ITEM structure, defined in mixer.h, is used to represent a data item for either
a mixer line or a mixer control. The structure is initialized by calling SoundInitDataItem and is
modified by SoundMixerChangedItem.

Members
Entry

Internal only. Contains FLINK and BLINK list pointers. Set by SoundInitDataItem.
LastSet

Internal only. Contains relative time of last change. Set by SoundInitDataItem and
SoundMixerChangedItem.

Message

MIXER_DATA_ITEM
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 174 Windows NT DDK

Internal only. Set by SoundInitDataItem. Contains type of notification message to send to
client. Can be either MM_MIXM_LINE_CHANGE or MM_MIXM_CONTROL_CHANGE.

Id
Internal only. Set by SoundInitDataItem. Contains either a line ID or a control ID.

Comments
Drivers allocate one of these structures for each line and control that can change. The structure
must be globally allocated, because soundlib.lib does not copy it. Instead, soundlib.lib modifies
the structure's Entry element to determine the structure's location within a linked list.

MIXER_INFO
typedef struct _MIXER_INFO {
 ULONG Key;
#define MIX_INFO_KEY (*(ULONG *)"Mix")
 UCHAR NumberOfLines;
 UCHAR NumberOfControls;
 LARGE_INTEGER CurrentLogicalTime;
 LIST_ENTRY NotifyQueue;
 LIST_ENTRY ChangedItems;
 PMIXER_DD_GET_SET_DATA HwGetLineData;
 PMIXER_DD_GET_SET_DATA HwGetControlData;
 PMIXER_DD_GET_SET_DATA HwGetCombinedControlData;
 PMIXER_DD_GET_SET_DATA HwSetControlData;
} MIXER_INFO, *PMIXER_INFO;

The MIXER_INFO structure contains context information for a mixer device.

Members
Key

Internal only, for debugging. Should be "Mix".
NumberOfLines

Number of mixer lines.
NumberOfControls

Number of mixer controls.
CurrentLogicalTime

Internal only. Incremented each time an item is added to the ChangedItems queue. Used as a
reference for determining the relative age of changed items.

NotifyQueue
Internal only. Pointer to an IRP queue of change notification targets. An IRP is added each
time soundlib.lib receives an IOCTL_MIX_REQUEST_NOTIFY message.

ChangedItems
Internal only. Pointer to a list of mixer items of type MIXER_DATA_ITEM. Modified by
SoundMixerChangedItem.

HwGetLineData
Pointer to a driver-supplied function that SoundMixerDispatch calls when it receives an
IOCTL_MIX_GET_LINE_DATA message. The function type is PMIXER_DD_GET_SET_DATA,
where the data parameter is a pointer to the fdwLine member of a MIXERLINE structure, and
the length parameter is the member's size. The function sets one or more of the following flags
in the address pointed to by data.

Flag Definition
MIXERLINE_LINEF_ACTIVE Indicates that the line is active. Used

mainly for waveform devices so the
application can determine when to poll the
peak meter.

MIXERLINE_LINEF_DISCONNECTED Indicates that the line is permanently

MIXER_INFO
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 175 Windows NT DDK

unavailable. Useful for disabling
capabilities available only on some
versions of the hardware.

MIXERLINE_LINEF_SOURCE Indicates this is a source line, not a
destination line.

These flags are defined in mmsystem.h. The MIXERLINE structure is described in the Win32
SDK.

HwGetControlData
Pointer to a driver-supplied function that SoundMixerDispatch calls when it receives an
IOCTL_MIX_GET_CONTROL_DATA message. The function type is
PMIXER_DD_GET_SET_DATA, where the length parameter is the size of the return buffer and
the data parameter is the return buffer's address. This address is the paDetails member of a
MIXERCONTROLDETAILS structure. See the description of MIXERCONTROLDETAILS in the
Win32 SDK for information on how the buffer should be filled.

HwGetCombinedControlData
Pointer to a driver-supplied function that returns the current values for the volume controls. If
the volume is controlled by mixer hardware, then always return 0xFFFF for each control.
Otherwise, if the master volume is supported in hardware, return the current value of the
control. If the master volume is simulated, return the combined volume and master volume as
a volume value.
The function type is PMIXER_DD_GET_SET_DATA, where the data parameter is a pointer to
a WAVE_DD_VOLUME structure and the length parameter is the structure's size.

HwSetControlData
Pointer to a driver-supplied function that SoundMixerDispatch calls when it receives an
IRP_MJ_WRITE message to set control items. The soundlib.lib dispatchers for waveform, MIDI
synthesizer, and auxiliary audio devices also call this function to set volume levels. Function
type is PMIXER_DD_GET_SET_DATA, where the length parameter is the size of the data
buffer and the data parameter is the data buffer's address. This address is the paDetails
member of a MIXERCONTROLDETAILS structure. Refer to the description of
MIXERCONTROLDETAILS in the Win32 SDK to understand the buffer contents. The function
should call SoundMixerChangedItem if the value of a control changes.

Comments
MIXER_INFO is defined in mixer.h.

Allocate a MIXER_INFO structure from the nonpaged memory pool by calling ExAllocatePool.
To zero and initialize a MIXER_INFO structure, call SoundInitMixerInfo.

To create a mixer device object, call SoundCreateDevice and specify a MIXER_INFO structure
pointer for the DeviceSpecificData parameter. Then assign the address of the mixer device's
LOCAL_DEVICE_INFO structure to the MixerDevice member of every other device's
LOCAL_DEVICE_INFO structure.

PMIXER_DD_GET_SET_DATA
typedef NTSTATUS (* PMIXER_DD_GET_SET_DATA)(struct _MIXER_INFO * MixerInfo, ULONG ID, ULONG Length, PVOID Data);

PMIXER_DD_GET_SET_DATA is a type definition for functions that set or retrieve information
for mixer lines and controls.

Parameters
MixerInfo

Pointer to a MIXER_INFO structure.
ID

A line ID or a control ID. For HwGetLineData, the value represents a line ID. For
HwGetControlData, HwGetCombinedControlData, and HwSetControlData, it is a control ID.

Length

PMIXER_DD_GET_SET_DATA
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 176 Windows NT DDK

Length of a data buffer.
Data

Pointer to a data buffer.

Comments
Drivers using soundlib.lib define functions modeled on this type and place their addresses in the
HwGetLineData, HwGetControlData, HwGetCombinedControlData, and HwSetControlData
members of a MIXER_INFO structure.

PSOUND_LINE_NOTIFY
typedef VOID (* PSOUND_LINE_NOTIFY)(struct _LOCAL_DEVICE_INFO *, UCHAR);

PSOUND_LINE_NOTIFY is the type definition for a function that is called when a line status
changes.

Parameters
_LOCAL_DEVICE_INFO*

Type for a pointer to a LOCAL_DEVICE_INFO structure.
UCHAR

Type for a line notification code. The following codes are passed to the notification routine by
soundlib.lib.

Device Type Notification Code
For waveform devices: SOUND_LINE_NOTIFY_WAVE

SOUND_LINE_NOTIFY_VOICE
For MIDI synthesizers: Always 0

Comments
Drivers using soundlib.lib define a function modeled on this type and call SoundSetLineNotify to
place its address in the LineNotify member of a LOCAL_DEVICE_INFO structure.

SOUND_DEVICE_INIT
 typedef struct {
 PCWSTR LeftVolumeName, RightVolumeName;
 ULONG DefaultVolume;
 ULONG Type;
 ULONG DeviceType;
 char Key[4];
 PCWSTR PrototypeName;
 PIO_DPC_ROUTINE DeferredRoutine;
 SOUND_EXCLUDE_ROUTINE *ExclusionRoutine;
 SOUND_DISPATCH_ROUTINE *DispatchRoutine;
 SOUND_DISPATCH_ROUTINE *DevCapsRoutine;
 SOUND_HW_SET_VOLUME_ROUTINE *HwSetVolume;
 ULONG IoMethod;
 } SOUND_DEVICE_INIT;

The SOUND_DEVICE_INIT structure associates driver dispatch routines with a driver object. A
SOUND_DEVICE_INIT structure must be defined for each logical input or output device. The
structure's definition is in devices.h.

LeftVolumeName
Registry key value name used when storing the left channel volume in the registry. Used with
SoundSaveDeviceVolume.

RightVolumeName
Registry key value name used when storing the right channel volume in the registry. Used with

SOUND_DEVICE_INIT
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 177 Windows NT DDK

SoundSaveDeviceVolume.
DefaultVolume

Initial volume setting to use during installation. Required for devices with mixers.
Type

Type of device. SoundCreateDevice passes this value to IoCreateDevice. The following
values, defined in ntddk.h, should be used.

Value Definition
FILE_DEVICE_WAVE_IN For waveform input
FILE_DEVICE_WAVE_OUT For wave output
FILE_DEVICE_MIDI_IN For MIDI input
FILE_DEVICE_MIDI_OUT For MIDI output
FILE_DEVICE_SOUND For all other audio devices

DeviceType
Type of device, used within soundlib.lib and drvlib.lib. The following values, defined in
soundcfg.h, are accepted.

Value Definition
WAVE_IN Waveform input device
WAVE_OUT Waveform output device
MIDI_IN MIDI input device
MIDI_OUT MIDI output device
AUX_DEVICE Auxiliary audio device
MIXER_DEVICE Mixer device
SYNTH_DEVICE MIDI Synthesizer device (adlib or opl3)

Key
For debugging purposes. Code in soundlib.lib copies this four-character string value into the
device's LOCAL_DEVICE_INFO structure.

PrototypeName
Prototype to use for creating a device object name. Unless the
SOUND_CREATION_NO_NAME_RANGE flag is specified as a SoundCreateDevice
parameter, SoundCreateDevice appends a sequential number, starting with zero, to this name.
If you are using mmdrv.dll as your user-mode driver, then you must use the prototype name
that mmdrv.dll recognizes for the device. The names recognized by mmdrv.dll are predefined
and their string IDs can be referenced using the following names.

Name Where Defined

DD_AUX_DEVICE_NAME_U ntddaux.h
DD_MIDI_IN_DEVICE_NAME_U
DD_MIDI_OUT_DEVICE_NAME_U

ntddmidi.h

DD_MIX_DEVICE_NAME_U ntddmix.h
DD_WAVE_IN_DEVICE_NAME_U
DD_WAVE_OUT_DEVICE_NAME_U

ntddwave.h

If you are using a customized user-mode driver, you cannot use the predefined names. For
example, in the SOUND_DEVICE_INIT structures for the kernel-mode driver sndblst.sys,
predefined names are used for MIDI devices but not for waveform, auxiliary, or mixer devices.
The result is that mmdrv.dll handles user-mode MIDI operations, and sndblst.dll handles all
others.

DeferredRoutine
Pointer to a deferred procedure call (DPC) routine, which SoundCreateDevice passes to
IoInitializeDpcRequest.
If the device object does not support interrupts, this member must be NULL. For drivers using
soundlib.lib, specify one of the following DPC routines.

SOUND_DEVICE_INIT
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 178 Windows NT DDK

Device Type DPC Routine
Waveform input and output devices SoundWaveDeferred
MIDI input devices SoundMidiInDeferred
MIDI output, auxiliary audio, and mixers NULL

ExclusionRoutine
Pointer to a mutual exclusion function, called from within soundlib.lib when it is necessary to
acquire or release a mutex for the device. To understand under what circumstances this
function is called, see the soundlib.lib source code, included with this DDK. The function type is
SOUND_EXCLUDE_ROUTINE.

DispatchRoutine
Pointer to a function that serves as a dispatcher for IRP function codes received by the driver.
Functions supplied by soundlib.lib are as follows:

Dispatcher Purpose
SoundAuxDispatch Dispatcher for auxiliary audio devices
SoundMidiDispatch Dispatcher for MIDI input and output devices
SoundMixerDispatch Dispatcher for mixer devices
SoundWaveDispatch Dispatcher for waveform input and output devices

The function type is SOUND_DISPATCH_ROUTINE. The specified function is called by
SoundDispatch.

DevCapsRoutine
Pointer to a driver-defined function that returns device capabilities.
The function type is SOUND_DISPATCH_ROUTINE. The specified function is called by the
dispatcher pointed to by the DispatchRoutine member, when the dispatcher receives
IRP_MJ_DEVICE_CONTROL with an accompanying request for device capabilities.
Capabilities for waveform, MIDI, and auxiliary devices are written into the IRP at
Irp->AssociatedIrp.SystemBuffer, in the form of either a WAVEINCAPS, WAVEOUTCAPS,
MIDIINCAPS, MIDIOUTCAPS, or AUXCAPS capabilities structure. (These structures are
defined in mmsystem.h and described in the Win32 SDK.)
Note: When filling in the szPname member of the capabilities structure, remember the
following:

• If your user-mode driver is mmdrv.dll, you must call InternalLoadString to translate string
IDs into strings, and return the strings in the szPname member.

• If your user-mode driver makes use of drvlib.lib, just return the string IDs in the szPname
member. Code in drvlib.lib calls InternalLoadString.

For mixer devices only, the following rules apply:

• Capabilities are written into the IRP at Irp->AssociatedIrp.SystemBuffer, in the form of a
MIXER_DD_CONFIGURATION_DATA structure (defined in ntddmix.h). Code in drvlib.lib
calls the capabilities function only when the device is being initialized. It stores the
MIXER_DD_CONFIGURATION_DATA structure contents and returns them to a client, in a
MIXERCAPS structure, when requested.

• The capabilities function is called twice (and only twice). The first time, it must only return
the size of the capabilities information. The second time it is called, the function returns the
capabilities information as a MIXER_DD_CONFIGURATION_DATA structure and a set of
associated structures.

As an aid to understanding these special rules, see the mixer capabilities function,
SoundMixerDumpConfiguration, provided in sndblst.sys, in
src\mmedia\sndblst\driver\mixer.c.

HwSetVolume
Pointer to a driver-supplied function that sets the volume for the device. The function type is
SOUND_HW_SET_VOLUME_ROUTINE.
The specified function is called by the dispatcher pointed to by the DispatchRoutine member,

SOUND_DEVICE_INIT
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 179 Windows NT DDK

when the dispatcher receives IRP_MJ_DEVICE_CONTROL with an accompanying request to
set the volume.
For devices without volume setting capabilities, use the SoundNoVolume function. Also use
SoundNoVolume for devices that include mixer hardware, because drivers for these devices
include a MIXER_INFO structure, and volume is controlled by a routine pointed to by that
structure's HwSetControlData member.

IoMethod
Specifies whether the Windows NT I/O Manager should use direct I/O or buffered I/O for data
transfers. Audio drivers should specify this value as shown in the following table.

Device Type I/O Method
Auxiliary DO_BUFFERED_IO
MIDI input DO_DIRECT_IO
MIDI output DO_DIRECT_IO
Mixer DO_BUFFERED_IO
Wave input DO_DIRECT_IO
Wave output DO_DIRECT_IO

For a discussion of direct I/O and buffer I/O methods, refer to the Kernel-Mode Drivers Design
Guide.

Comments
The SOUND_DEVICE_INIT structure's address is passed to SoundCreateDevice. The structure
must not be freed and must be nonpaged, because SoundCreateDevice does not copy it.

You must initialize all structure members before calling SoundCreateDevice. The
LeftVolumeName, RightVolumeName, and DefaultVolume members can be initialized to
NULL, NULL, and 0, respectively.

SOUND_DISPATCH_ROUTINE
typedef NTSTATUS SOUND_DISPATCH_ROUTINE(struct _LOCAL_DEVICE_INFO *, PIRP, PIO_STACK_LOCATION);

SOUND_DISPATCH_ROUTINE is the type definition of dispatch routines for IRP function codes.

Parameters
_LOCAL_DEVICE_INFO*

Type for a pointer to a LOCAL_DEVICE_INFO structure.
PIRP

Type for a pointer to an IRP structure.
PIO_STACK_LOCATION

Type for a pointer to an IO_STACK_LOCATION structure.

Return Value
Returns STATUS_SUCCESS if the operation succeeds. Otherwise returns an NTSTATUS error
code.

Comments
Drivers using soundlib.lib place the address of a function modeled on this type in the
DispatchRoutine and DevCapsRoutine members of a SOUND_DEVICE_INIT structure.

SOUND_DMA_BUFFER
typedef struct {
 PADAPTER_OBJECT AdapterObject[2];
 ULONG BufferSize;
 PVOID VirtualAddress;
 PHYSICAL_ADDRESS LogicalAddress;

SOUND_DMA_BUFFER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 180 Windows NT DDK

 PMDL Mdl;
} SOUND_DMA_BUFFER, *PSOUND_DMA_BUFFER;

The SOUND_DMA_BUFFER structure describes a DMA buffer. It is used as input to the
SoundGetCommonBuffer and SoundFreeCommonBuffer functions.

Members
AdapterObject[2]

Array of pointers to adapter objects. (Only the first array element is used.)
BufferSize

Size of buffer, in bytes.
VirtualAddress

Virtual address of buffer.
LogicalAddress

Logical address of buffer.
Mdl

Pointer to a memory descriptor list (MDL).

SOUND_DOUBLE_BUFFER
typedef struct {
 enum {LowerHalf = 0,
 UpperHalf}
 NextHalf;
 ULONG BufferSize;
 PUCHAR Buf;
 ULONG StartOfData;
 ULONG nBytes;
 UCHAR Pad;
} SOUND_DOUBLE_BUFFER, *PSOUND_DOUBLE_BUFFER;

The SOUND_DOUBLE_BUFFER structure is an internal structure that describes the usage of a
DMA buffer of type SOUND_DMA_BUFFER.

Members
NextHalf

Indicates which half of the buffer is to be used next.
BufferSize

Actual amount of DMA buffer in use. Obtained by calling SoundGetDMABufferSize.
Buf

Pointer to a buffer specified by a SOUND_DMA_BUFFER structure.
StartOfData

Start of valid data.
nBytes

Number of bytes in buffer.
Pad

Value to use when padding the buffer.

SOUND_EXCLUDE_CODE
typedef enum {
 SoundExcludeOpen,
 SoundExcludeClose,
 SoundExcludeEnter,
 SoundExcludeLeave,
 SoundExcludeQueryOpen
} SOUND_EXCLUDE_CODE;

SOUND_EXCLUDE_CODE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 181 Windows NT DDK

SOUND_EXCLUDE_CODE is an enumerated type that is used with exclusion routines. Exclusion
routines are defined using the SOUND_EXCLUDE_ROUTINE type.

Elements
SoundExcludeOpen

The device is being opened.
SoundExcludeClose

The device is being closed.
SoundExcludeEnter

A request for this device is starting.
SoundExcludeLeave

The request is finished.
SoundExcludeQueryOpen

Queries to determine if the device is open.

SOUND_EXCLUDE_ROUTINE
typedef BOOLEAN SOUND_EXCLUDE_ROUTINE(struct _LOCAL_DEVICE_INFO *, SOUND_EXCLUDE_CODE);

SOUND_EXCLUDE_ROUTINE is a type definition for routines that handle mutual exclusion
operations.

Parameters
_LOCAL_DEVICE_INFO*

Type for a pointer to a LOCAL_DEVICE_INFO structure.
SOUND_EXCLUDE_CODE

Type for a code indicating the type of exclusion operation the routine should handle. See
SOUND_EXCLUDE_CODE for the type's definition.

Comments
Drivers using soundlib.lib define a function modeled on this type and place its address in the
ExclusionRoutine member of a SOUND_DEVICE_INIT structure.

The SoundExcludeOpen and SoundExcludeClose exclusion codes request and release access
to the device, to serialize the device's use. SoundExcludeEnter and SoundExcludeLeave
control temporary synchronization to the device. Generally, a driver uses mutex objects to handle
these operations.

SOUND_HW_SET_VOLUME_ROUTINE
typedef VOID SOUND_HW_SET_VOLUME_ROUTINE(struct _LOCAL_DEVICE_INFO *);

SOUND_HW_SET_VOLUME_ROUTINE is the type definition for a routine the sets the volume
for a device.

Parameters
_LOCAL_DEVICE_INFO*

Type for a pointer to a LOCAL_DEVICE_INFO structure.

Comments
Drivers using soundlib.lib define a function modeled on this type and place its address in the
HwSetVolume member of a SOUND_DEVICE_INIT structure.

SOUND_QUERY_FORMAT_ROUTINE
typedef NTSTATUS SOUND_QUERY_FORMAT_ROUTINE (PLOCAL_DEVICE_INFO, PPCMWAVEFORMAT);

SOUND_QUERY_FORMAT_ROUTINE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 182 Windows NT DDK

SOUND_QUERY_FORMAT_ROUTINE is the type definition for a function used to determine if a
specified wave format is supported.

Parameters
PLOCAL_DEVICE_INFO

Type for a pointer to a LOCAL_DEVICE_INFO structure.
PPCMWAVEFORMAT

Type for a wave format. Although PPCMWAVEFORMAT is specified, any
PWAVEFORMATEX is valid. Wave formats are defined in mmsystem.h.

Comments
Drivers using soundlib.lib define a function modeled on this type and place its address in the
QueryFormat member of a WAVE_INFO structure.

SOUND_REGISTRY_CALLBACK_ROUTINE
typedef NTSTATUS SOUND_REGISTRY_CALLBACK_ROUTINE(PWSTR RegistryPathName, PVOID Context);

SOUND_REGISTRY_CALLBACK_ROUTINE is the type definition for the callback function that is
called by SoundEnumSubkeys.

Parameters
RegistryPathName

Pointer to the full registry path to a subkey representing a hardware device. The path format is
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters\DeviceNumber

Context
Pointer to driver-specified context information. This is the Context parameter to
SoundEnumSubkeys, and is typically the address of a driver-defined structure for storing
device-specific information.

Comments
The function should save the path name pointer in device-specific storage, and use it as input to
soundlib.lib functions requiring a registry path to a hardware device.

Note: Prior to being unloaded, the driver must deallocate the space allocated to the path name.

SYNTH_HARDWARE
typedef struct {
 ULONG Key; // For debugging
#define SYNTH_HARDWARE_KEY (*(ULONG *)"Hw ")
 PUCHAR SynthBase; // base port address for synth
} SYNTH_HARDWARE, *PSYNTH_HARDWARE;

The SYNTH_HARDWARE structure contains hardware information for synthesizer devices.

Members
Key

Internal only, for debugging. Should be "hw ".
SynthBase

Base of mapped port address space. Returned from SoundMapPortAddress.

WAVE_INFO
typedef struct _WAVE_INFO {
 ULONG Key;
#define WAVE_INFO_KEY (*(ULONG *)"Wave")

WAVE_INFO
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 183 Windows NT DDK

 PDEVICE_OBJECT DeviceObject;
 SOUND_DMA_BUFFER DMABuf;
 SOUND_DOUBLE_BUFFER DoubleBuffer;
 SOUND_BUFFER_QUEUE BufferQueue;
 ULONG SamplesPerSec;
 UCHAR BitsPerSample;
 UCHAR Channels;
 BOOLEAN FormatChanged;
 PWAVEFORMATEX WaveFormat;
 BOOLEAN LowPrioritySaved;
 PFILE_OBJECT LowPriorityHandle;
 PLOCAL_DEVICE_INFO LowPriorityDevice;
 struct {
 SOUND_BUFFER_QUEUE BufferQueue;
 ULONG SamplesPerSec;
 UCHAR BitsPerSample;
 UCHAR Channels;
 PWAVEFORMATEX WaveFormat;
 ULONG State;
 } LowPriorityModeSave;
 PVOID MRB[2];
 KEVENT DmaSetupEvent;
 KEVENT DpcEvent;
 KEVENT TimerDpcEvent;
 KSPIN_LOCK DeviceSpinLock;
#if DBG
 BOOLEAN LockHeld;
#endif
 PKINTERRUPT Interrupt;
 BOOLEAN Direction;
 UCHAR DMAType;
 UCHAR InterruptHalf;
 volatile BOOLEAN DMABusy;
 volatile BOOLEAN DpcQueued;
 ULONG Overrun;
 PVOID HwContext;
 WORK_QUEUE_ITEM WaveStopWorkItem;
 KEVENT WaveReallyComplete;
 PSOUND_QUERY_FORMAT_ROUTINE QueryFormat;
 PWAVE_INTERFACE_ROUTINE
 HwSetupDMA,
 HwStopDMA,
 HwSetWaveFormat;
 KDPC TimerDpc;
 KTIMER DeviceCheckTimer;
 BOOLEAN GotWaveDpc;
 BOOLEAN DeviceBad;
 BOOLEAN TimerActive;
 UCHAR FailureCount;
} WAVE_INFO, *PWAVE_INFO;

The WAVE_INFO structure contains wave device context information.

Members
Key

Internal only, for debugging. Should be "Wave".
DeviceObject

Pointer to a DEVICE_OBJECT structure.

WAVE_INFO
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 184 Windows NT DDK

DMABuf
Structure describing a DMA buffer. Structure type is SOUND_DMA_BUFFER. Call
SoundGetCommonBuffer to fill in this structure.

DoubleBuffer
Internal only. This is an internal structure containing additional information about the DMA
buffer. The structure contains a pointer to the buffer described by the DMABuf member. The
structure type is SOUND_DOUBLE_BUFFER.

BufferQueue
Internal only. For queuing device requests.

SamplesPerSec
Current samples per second.

BitsPerSample
Current bits per sample, per channel.

Channels
Current number of channels.

FormatChanged
Format has changed. Tested by HwSetWaveFormat function.

WaveFormat
Format for non-PCM formats.

LowPrioritySaved
LowPriorityHandle
LowPriorityDevice
LowPriorityModeSave

These four members are used by soundlib.lib for management of low priority mode, which
allows a wave input device to nominate itself as pre-emptible if its dispatch routine receives
IOCTL_WAVE_SET_LOW_PRIORITY. Only one user can be in low priority mode at a time.

MRB
Internal only. Contains adapter information.

DmaSetupEvent
Internal only. Stores event to wait on during channel allocation.

DpcEvent
Internal only. Used for synchronization with DPC termination.

TimerDpcEvent
Internal only. Used to track rogue devices.

DeviceSpinLock
Internal only. Used for DPC synchronization.

LockHeld
Internal only. Used for debugging.

Interrupt
Pointer to an interrupt object. Should be obtained from a call to SoundConnectInterrupt.

Direction
Set by soundlib.lib. Set to TRUE for output, FALSE for input.

DMAType
Type of DMA. One of the following enumerated values:
enum {
 SoundNoDMA,
 SoundAutoInitDMA, // Use auto-initialize
 SoundReprogramOnInterruptDMA, // Reprogram on interrupt
 Sound2ChannelDMA // Keep 2 channels going
};

Sound2ChannelDMA is not currently supported in soundlib.lib. It is intended for a device
whose hardware uses two DMA channels and alternates between them to achieve continuous
sound.

WAVE_INFO
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 185 Windows NT DDK

InterruptHalf
Internal only. Reserved for use when the DMAType member's value is
SoundReprogramOnInterruptDMA.

DMABusy
Set by soundlib.lib if DMA is in progress.

DpcQueued
Used for detecting an overrun condition. The ISR should test DpcQueued. If clear, the ISR can
call IoRequestDpc. If set, an overrun has occurred and the ISR should set Overrun (see
below) instead of calling IoRequestDpc.

Overrun
Set by the driver's ISR if overrun occurs.

HwContext
Pointer to a driver-defined structure containing device-specific hardware information. Typically
used by functions pointed by the HwSetupDMA, HwStopDMA, and HwSetWaveFormat
members.

WaveStopWorkItem
Internal only. Structure used for calls to ExInitializeWorkItem and ExQueueWorkItem, when
soundlib.lib is using system worker threads.

WaveReallyComplete
Internal only. Set by system worker thread after HwStopDMA has returned.

QueryFormat
Pointer to a driver-supplied function called when the driver receives
IOCTL_WAVE_SET_FORMAT or IOCTL_WAVE_QUERY_FORMAT message. The function
type is SOUND_QUERY_FORMAT_ROUTINE.

HwSetupDMA
Pointer to a driver-supplied function that programs the hardware to start a DMA transfer.
Function type is WAVE_INTERFACE_ROUTINE.
The function is called after soundlib.lib has set up map registers by calling IoMapTransfer. For
more information, see \src\mmedia\soundlib\wave.c.

HwStopDMA
Points to a driver-supplied function that sends commands to the hardware to stop DMA
transfers. The function type is WAVE_INTERFACE_ROUTINE.
The function is called just before soundlib.lib calls IoFlushAdapterBuffers. For more
information, see \src\mmedia\soundlib\wave.c.

Note: HwStopDMA must not acquire the device exclusion mutex that soundlib.lib uses to
synchronize device access. Code in soundlib.lib waits for a transfer to complete before starting a
new one, and this wait occurs inside a request to the device, when the mutex is owned by the
waiting thread. This means that HwStopDMA can require extra synchronization code, even
though no further hardware calls to the current device can occur until the current transfer is
complete.

HwSetWaveFormat
Points to a driver-supplied function that sends commands to the hardware to set the wave
format. The function type is WAVE_INTERFACE_ROUTINE.
The function is called just before soundlib.lib starts each DMA transfer. For more information,
see \src\mmedia\soundlib\wave.c.

TimerDpc
Internal only. Structure used by soundlib.lib for calls to KeInitializeDpc.

DeviceCheckTimer
Internal only. Structure used by soundlib.lib for calls to KeInitializeTimer.

GotWaveDpc
Internal only. Indicates the device is active.

DeviceBad

WAVE_INFO
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 186 Windows NT DDK

Internal only. Set if the device doesn't send interrupts.
TimerActive

Internal only. Indicates the device is active.
FailureCount

Internal only. Contains count of failed I/O attempts. If the count reaches 30, BadDevice is set.

Comments
One WAVE_INFO structure must be defined for each waveform device (input or output) that can
be in operation simultaneously. WAVE_INFO is defined in wave.h.

Allocate a WAVE_INFO structure from the nonpaged memory pool by calling ExAllocatePool,
and then zero it by calling RtlZeroMemory. To initialize a WAVE_INFO structure, assign values
to the HwSetupDMA, HwStopDMA, and HwSetWaveFormat members and then call
SoundInitializeWaveInfo.

To create a waveform device object, call SoundCreateDevice and specify a WAVE_INFO
structure pointer for the DeviceSpecificData parameter.

WAVE_INTERFACE_ROUTINE
typedef BOOLEAN WAVE_INTERFACE_ROUTINE(struct _WAVE_INFO *);

WAVE_INTERFACE_ROUTINE is a type definition for functions that send commands to
waveform hardware.

Parameters
_WAVE_INFO*

Type for a pointer to a WAVE_INFO structure.

Comments
Drivers using soundlib.lib define functions modeled on this type and place their addresses in the
HwSetupDMA, HwStopDMA, and HwSetWaveFormat members of a WAVE_INFO structure.

Audio Compression Manager Drivers
The Audio Compression Manager (ACM) and its associated drivers compress, decompress,
convert, and filter waveform file data. The following topics are provided:

• Introduction to the ACM
• Introduction to ACM Drivers
• Designing an ACM Driver
• ACM Driver Reference

Introduction to the ACM
The Audio Compression Manager (ACM) provides a set of API functions that allows a client to
perform compressions, decompressions, format conversions, and filtering operations on
waveform file data.

The ACM is implemented as a dynamic-link library named msacm32.dll. Applications that link with
the ACM can call its API functions. The ACM is also used by the Windows NT® wave mapper,
msacm32.drv, so applications that specify the wave mapper as an input or output device make
indirect use of the ACM. To view a diagram that illustrates the relationship of the ACM to other

Introduction to the ACM
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 187 Windows NT DDK

Windows NT audio software, see Audio Software Components.

Descriptions of the ACM API functions are provided in the Win32 SDK. ACM API functions begin
with a prefix of acm.

The ACM calls installable, user-mode drivers to perform conversions. Most ACM drivers can be
installed with the Control Panel's Multimedia applet and are available to all Win32-based
applications. (For more information, see Installing Multimedia Drivers.) Individual applications can
also load ACM drivers for their own private use. (For more information, see acmDriverAdd in the
Win32 SDK, and Designing Local ACM Drivers.)

Introduction to ACM Drivers
This section introduces some general information about ACM drivers. It describes the types of
ACM drivers, discusses format tags and filter tags, and introduces the sample ACM drivers that
are provided with this DDK.

An ACM driver is a type of user-mode multimedia driver. For a general discussion of multimedia
drivers, see Introduction to Multimedia Drivers.

Types of ACM Drivers
There are three types of ACM drivers  codecs, converters, and filters.

Codecs
A codec (the term is short for compressor/decompressor) converts from one format type to
another. Typically, a codec converts between a compressed format, such as MS-ADPCM, and
the uncompressed PCM format, which most hardware recognizes.

Converters
A converter converts between different formats belonging to the same format type, such as
between 44 kHz PCM and 11 kHz PCM formats.

Filters
A filter modifies audio data without changing the format. For example, an echo filter might add
an echo sound to a 44 kHz PCM waveform file.

For more information on the difference between codecs and converters, see Format Tags and
Filter Tags.

ACM drivers provided by Microsoft include codecs that convert the MS-ADPCM, IMA ADPCM,
GSM 6.10-compliant, and Truespeech compressed formats to PCM.

The ACM also provides a PCM converter that converts between 8-bit and 16-bit PCM, between
mono and stereo, and among various PCM sampling frequencies. This converter is not
implemented is a separate installable driver. Instead, it is contained within the ACM's DLL file,
msacm32.dll.

Format Tags and Filter Tags
A format tag represents the name for a format type. A filter tag represents the name for a filter
type. Typically, an ACM driver supports one or more types of formats and/or filters. Within
Windows NT DDK documentation, ACM data structures, and sample ACM drivers, the term tag is
used more often than type.

Typically, a set of formats or filters is associated with each tag. For example, the sample IMA
ADPCM audio codec supports two format tags, namely the WAVE_FORMAT_PCM tag for the
PCM format type and the WAVE_FORMAT_IMA_ADPCM tag for the IMA ADPCM format type.
For each of these format tags, the driver supports several formats consisting of various sample
rates and sample sizes.

To differentiate between codecs and converters, we can say that a codec transforms data from a

Format Tags and Filter Tags
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 188 Windows NT DDK

format belonging to one format tag into a format belonging to another format tag, while a
converter transforms data from one format to another belonging to the same format tag.

Format tags and filter tags are defined in mmreg.h. If you are writing a driver for a new format
type or filter type, you must register the type by using the Multimedia Developer Registration Kit.

Sample ACM Drivers
The Windows NT DDK includes the following three sample ACM drivers:

IMA ADPCM Audio Codec
The IMA ADPCM Audio Codec, imaadp32.dll, converts between PCM and the IMA ADPCM
format. This codec is optimized for speed, and illustrates how to design conversion routines to
reduce computation time. It also provides a configuration dialog box. The first time the codec is
opened, it tries to automatically configure itself by calculating its maximum sample rate.
Source files for imaadp32.dll are located in \ddk\src\mmedia\imaadpcm.

Microsoft GSM 6.10 Audio Codec
The Microsoft GSM 6.10 Audio Codec, msgsm32.dll, implements the GSM 6.10 voice
encoding standard, originally developed for digital cellular telephone encoding. The codec
converts between GSM 6.10 and PCM formats. Like imaadp32.dll, this codec provides a
configuration dialog box, and also attempts to automatically configure itself the first time it is
opened.
Source files for msgsm32.dll are located in \ddk\src\mmedia\gsm610.

Microsoft Audio Filter
The Microsoft Audio Filter, msfltr32.dll, is a single driver that provides both a volume filter and
an echo filter. This driver supports a custom About box and a custom icon, which are explained
in Providing a Custom About Box and Providing a Custom Icon.
Source files for msfltr32.dll are located in \ddk\src\mmedia\msfilter.

You should be able to easily create a new ACM driver by using these samples as models. The
source code contains extensive comments that explain how the code works and how it should be
modified to implement a new driver. You'll see that, in general, all ACM drivers are very similar to
each other, both in their functionality and in their code layout.

Designing an ACM Driver
The best way to design and create a new ACM driver is to modify one of the sample ACM drivers,
because all ACM drivers are similar to each other in layout, and because the sample code is well
documented to indicate how changes should be made.

This section provides the following topics:

• DriverProc in ACM Drivers
• ACM Driver Messages
• Converting Data Streams
• Notifying Clients from ACM Drivers
• Installing ACM Drivers
• Configuring ACM Drivers
• Designing Local ACM Drivers
• Defining Format Structures and Filter Structures
• Providing a Custom About Box
• Providing a Custom Icon

• Providing ACM Support in Device Drivers
• Writing Portable ACM Drivers
• Guidelines for Writing ACM Drivers

Designing an ACM Driver
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 189 Windows NT DDK

DriverProc in ACM Drivers
Like all other Win32-based user-mode drivers, ACM drivers must export a DriverProc entry point
which recognizes all of the standard driver messages. The ACM sends messages to its drivers by
calling SendDriverMessage, which is exported by winmm.dll and described in the Win32 SDK.

ACM drivers generally provide support for DRV_OPEN, DRV_CLOSE, DRV_CONFIGURE and
DRV_QUERYCONFIGURE messages, as illustrated by the sample ACM drivers. ACM drivers
generally do not need to provide much, if any, support for DRV_INSTALL, DRV_LOAD,
DRV_ENABLE, DRV_DISABLE, DRV_FREE, or DRV_REMOVE messages.

When an ACM driver receives a DRV_OPEN message from the ACM, it also receives a pointer to
an ACMDRVOPENDESC structure. The driver receives the pointer as the lParam2 argument to
its DriverProc function.

In addition to supporting the standard messages, the DriverProc entry point for ACM drivers must
support a set of ACM driver messages.

ACM Driver Messages
The following table lists the messages that the DriverProc function in an ACM driver can receive,
along with the operation the driver performs when it receives each message. Message definitions
are contained in msacmdrv.h.

Message Operation Performed by Driver

ACMDM_DRIVER_ABOUT Displays an About dialog box.
ACMDM_DRIVER_DETAILS Returns information about the driver.
ACMDM_DRIVER_NOTIFY Determines status changes in other drivers.
ACMDM_FILTER_DETAILS Returns information about a filter.
ACMDM_FILTERTAG_DETAILS Returns information about a filter tag (type).
ACMDM_FORMAT_DETAILS Returns information about a format.
ACMDM_FORMAT_SUGGEST Suggests an input or output format.
ACMDM_FORMATTAG_DETAILS Returns information about a format tag (type).
ACMDM_HARDWARE_WAVE_CAPS_INPUT Returns device input capabilities.
ACMDM_HARDWARE_WAVE_CAPS_OUTPUTReturns device output capabilities.
ACMDM_STREAM_CLOSE Closes a data stream.
ACMDM_STREAM_CONVERT Performs conversion operations on supplied

data, based on conversion parameters received
by ACMDM_STREAM_OPEN.

ACMDM_STREAM_OPEN Opens a data stream. Includes data conversion
parameters.

ACMDM_STREAM_PREPARE Prepares source and destination data buffers.
ACMDM_STREAM_RESET Stops an asynchronous conversion operation.
ACMDM_STREAM_SIZE Estimates the required size of a source or

destination buffer.
ACMDM_STREAM_UNPREPARE Removes preparation performed on source and

destination data buffers.

Converting Data Streams
Each ACM driver, whether a codec, converter, or filter, treats data as a stream. A client passes
the input stream to the driver in one or more source buffers. The driver performs a conversion
operation on the data and returns the converted stream to the client in one or more destination
buffers.

Converting Data Streams
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 190 Windows NT DDK

ACM drivers can be designed to handle data conversion operations either synchronously or
asynchronously. Generally, asynchronous operation only makes sense when a driver can perform
hardware-assisted conversions. Drivers providing software-implemented conversions, such as the
sample ACM drivers, usually operate synchronously.

A driver opens a stream when a client sends it an ACMDM_STREAM_OPEN message. With this
message, the client includes pointers to structures that describe the format and other
characteristics of both the source (input) and destination (output) streams. The driver uses this
information to determine the types of transformations to perform on the source data.

If the client sends the driver an ACMDM_STREAM_SIZE message, specifying a source (or
destination) buffer size, the driver returns the required size of a destination (or source) buffer. The
driver uses the source and destination format characteristics, received with the previous
ACMDM_STREAM_OPEN message, to determine the necessary source or destination buffer size.

Before the client can pass data buffers to the driver, it must prepare the buffers for use by passing
them to the driver with an ACMDM_STREAM_PREPARE message. Each
ACMDM_STREAM_PREPARE message includes the address of a stream header structure,
defined by ACMDRVSTREAMHEADER, containing pointers to a source buffer and a destination
buffer.

When the driver receives an ACMDM_STREAM_CONVERT message from the client, it begins
the data transformation. Each ACMDM_STREAM_CONVERT message includes the address of a
prepared stream header structure. The algorithm for what happens next depends on whether the
driver is designed to operate synchronously or asynchronously.

To convert data synchronously
• The driver applies the appropriate transformation algorithms to the source buffer data and

places the results in the destination buffer. It then returns control to the client.

• The client can send additional ACMDM_STREAM_CONVERT messages. Each time the driver
receives a message, it converts the data and places it in the destination buffer, then returns
control to the client.

To convert data asynchronously
• The driver places the address of the stream header structure in a queue, and returns control to

the client. The client is then free to send additional ACMDM_STREAM_CONVERT messages,
and the client adds the addresses of the additional header structures to its conversion queue.

• The driver applies the appropriate transformation algorithms to each source buffer and places
the results in the associated destination buffer. Each time a buffer is converted, the driver
sends the client an MM_ACM_DONE callback message and dequeues the associated stream
header structure.

• The driver continues this conversion and notification sequence until all buffers have been
converted, or until the client sends an ACMDM_STREAM_RESET message.

When the client has finished the conversion, it sends an ACMDM_STREAM_UNPREPARE
message for each stream header structure, and then sends an ACMDM_STREAM_CLOSE
message.

Note: If your driver supports asynchronous conversions and a client requests a synchronous
conversion (by not specifying the ACM_STREAMOPENF_ASYNC flag with the acmStreamOpen
function, which is described in the Win32 SDK), the ACM manager sets the
ACM_STREAMOPENF_ASYNC flag and specifies a local event handle as a callback target. In
other words, the driver always receives ACM_STREAMOPENF_ASYNC with
ACMDM_STREAM_OPEN if it is an asynchronous driver. The ACM receives the callback
notification messages sent by the driver, and the conversion appears to operate synchronously
from the client's point of view. For more information about callbacks, see Notifying Clients from
ACM Drivers.

Real Time Conversions
Generally, ACM drivers should perform conversions in real time. This means the driver should be

Converting Data Streams
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 191 Windows NT DDK

able to perform conversion operations fast enough that there are no delays in a recording or
playback operation, if a client is requesting the conversion to take place simultaneously with the
recording or playback operation. (An example of such a client is the wave mapper.)
Consequently, if a driver's conversion algorithm requires relatively large amounts of calculations,
it might not be able to run in real time.

When a client sends an ACMDM_STREAM_OPEN message, it can set a flag to indicate that it
does not require the conversion to take place in real time. Drivers that cannot provide real time
conversions can only operate if the client sets this flag.

Hardware-Assisted Conversions
Some waveform devices support hardware-assisted conversions. These devices accept data in
one format, convert it to another format, and return the converted data without playing it.
Hardware-assisted conversions are typically faster than conversions that must be entirely
implemented in software. Drivers that make use of hardware assistance should probably be
written to operate asynchronously.

To access a hardware conversion operation, an ACM driver must call the device's kernel-mode
driver, typically by means of the DeviceIOControl function described in the Win32 SDK. (For
more information about kernel-mode drivers, see Kernel-Mode Multimedia Drivers.)

Notifying Clients from ACM Drivers
Asynchronous ACM drivers are responsible for notifying clients upon the completion of certain
driver events. When a client sends an ACMDM_STREAM_OPEN message, it indicates the type
of notification, if any, it expects to receive. A client can specify any of the following notification
targets:

• A callback function
• A window handle
• An event handle

ACM drivers notify clients by calling the DriverCallback function in winmm.dll. This function
delivers a message to the client's notification target. The DriverCallback function also delivers
message parameters, if the target type accepts parameters.

Asynchronous ACM drivers must send MM_ACM_OPEN, MM_ACM_CLOSE, and
MM_ACM_DONE messages to clients.

Because the sample ACM drivers provided with this DDK operate synchronously, they do not
send notification messages.

Installing ACM Drivers
If you are writing an ACM driver that is meant to be available to all applications, the driver must
be installed so that the ACM can find it.

On the other hand, if you are writing an ACM driver that is meant to be locally available to a
specific application, the driver is not installed. Instead, either the application or the driver calls
acmDriverAdd, described in the Win32 SDK, to make the driver locally accessible. (For more
information about local ACM drivers, see Designing Local ACM Drivers.)

ACM drivers that are meant to be available to all applications are installed by using the
Multimedia applet in the Control Panel. You must provide an oemsetup.inf file for your driver.
Following is a sample oemsetup.inf file:

[Source Media Descriptions]
 1 = "MSGSM610" , TAGFILE = disk1

[Installable.Drivers]
msgsm610 = 1:msgsm32.acm, "msacm.msgsm610", "Microsoft GSM 6.10 Audio CODEC" ,,,

Installing ACM Drivers
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 192 Windows NT DDK

For a description of oemsetup.inf file contents, see Installing Multimedia Drivers. The sample file
causes the Multimedia applet to create the following registry entry:

msacm.msgsm610 : REG_SZ : msgsm32.acm

This entry is placed in the registry path HKEY_LOCAL_MACHINE \SOFTWARE \Microsoft
\Windows NT \CurrentVersion \Drivers32

The ACM searches this registry path to determine which ACM drivers are installed. For each
installed ACM driver, there must be a registry value name of the form msacm.alias, where alias is
a unique name. This name is generally known as the driver type. For ACM drivers, only one driver
file can be associated with each driver type.

Notice that the ACM driver's file extension is .acm. While not required, this extension is favored
over .dll for ACM drivers.

Configuring ACM Drivers
It is often necessary for ACM drivers to obtain and store configuration parameters. A driver
requiring configuration parameters must display a configuration dialog box when its DriverProc
function receives a DRV_CONFIGURE message. The dialog box must allow a user to specify
configuration parameter values. Optionally, the dialog box can allow the user to select automatic
configuration. If your driver provides this automatic configuration option, it must attempt to
automatically provide values for all configuration parameters. Two of the sample ACM drivers, the
IMA ADPCM Audio Codec and the Microsoft GSM 6.10 Audio Codec, provide automatic
configuration.

An ACM driver's DriverProc function must respond to DRV_QUERYCONFIGURE messages by
indicating whether or not the driver provides a configuration dialog box.

A separate copy of an ACM driver's configuration parameters should be saved for each user. To
accomplish this, the driver should store configuration parameters in the registry, under the path
HKEY_CURRENT_USER\Software\Microsoft\Multimedia\msacm.alias.

For a description of alias, see Installing ACM Drivers. (Use the msacm.alias naming scheme even
for local drivers, which are not installed.) Since configuration parameters should be stored for
each user, the parameters should be obtained and stored when the driver receives a DRV_OPEN
message.

It is important for your driver to provide default values for all configuration parameters. In some
circumstances, such as the playing of system sounds, there is no user context, so attempts to
reference a registry path under HKEY_CURRENT_USER will fail. In such a case your driver must
use its default values.

Designing Local ACM Drivers
Local ACM drivers are available only to a specific application. The application must explicitly add
the driver to the ACM's list of available drivers with a call to acmDriverAdd, which is exported by
the ACM and described in the Win32 SDK. If you are writing a local ACM driver, you can locate
your driver code in your application or in a separate DLL file.

Including ACM Driver Code in an Application
If you include ACM driver code within an application, the application must define a DriverProc
function that recognizes ACM driver messages. To access the ACM driver code, your application
must:

• Call acmDriverAdd, specifying it's own module handle as an input parameter.
• Communicate with the driver code by calling the ACM's API functions.
• Call acmDriverRemove when it has finished using the ACM driver code.

Providing a Local ACM Driver as a Separate DLL

Designing Local ACM Drivers
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 193 Windows NT DDK

If you provide a local ACM driver as a separate DLL, your application must call LoadLibrary (see
the Win32 SDK) to load the driver. The driver must define a DriverProc function that recognizes
ACM driver messages. After the driver has been loaded, it must:

• Call acmDriverAdd, specifying it's own module handle as an input parameter.
• Respond to ACM driver messages received when the application calls the ACM's API functions.
• Call acmDriverRemove when the application signals that it has finished using the driver.

Defining Format Structures and Filter Structures
Associated with each format tag and filter tag is a data structure that is based on the
WAVEFORMATEX structure or the WAVEFILTER structure. These structures are described in
the Win32 SDK and defined in mmreg.h.

If your driver provides support for new format tags or filter tags, you must provide new structure
definitions and register them by using the Multimedia Developer Registration Kit.

Providing a Custom About Box
An ACM driver can provide a custom About box. This About box is displayed by the Control
Panel's Multimedia applet. If the driver does not provide a custom About box, the Multimedia
applet uses a default About box.

When the driver receives an ACMDM_DRIVER_ABOUT message, it should call DialogBox
(described in the Win32 SDK) to create and display its custom dialog box. If the driver does not
provide a custom dialog box, it should return MMMSYSERR_NOTSUPPORTED when it receives
an ACMDM_DRIVER_ABOUT message.

To lessen the task involved in writing an ACM driver, and provide user interface consistency, it is
better to use the default About box than to provide a custom About box.

Providing a Custom Icon
An ACM driver can provide a custom icon. This icon is displayed by the Control Panel's
Multimedia applet inside the driver's Properties and About boxes. If the driver does not provide a
custom icon, the Multimedia applet uses a default icon. To provide a custom icon, you should
design the icon using a graphics application and define it to be a resource in the driver's resource
definition (.rc) file. For more information about creating icons, see the Win32 SDK.

When the driver receives an ACMDM_DRIVER_DETAILS message, it should call LoadIcon
(described in the Win32 SDK) to load the icon, and return the icon's handle in the
ACMDRIVERDETAILS structure's hIcon member. To use the default icon, the driver should
return NULL in hIcon.

Providing ACM Support in Device Drivers
Some waveform devices can play and record data that is in a compressed format. For these
devices, clients do not have to call ACM functions to convert data streams. However, ACM
functions provide one of the means by which clients determine which formats are supported on a
system. So even if a particular format is supported by device hardware, the client still might call
ACM functions to determine if the format is supported. (The other means by which clients
determine if a device supports a compressed format is by specifying the
WAVE_FORMAT_DIRECT flag with the WODM_OPEN and WIDM_OPEN audio driver
messages.)

If you are designing a user-mode audio driver for a waveform device that supports a format in
hardware, your driver's DriverProc function must support, at a minimum, the following ACM
driver messages:

Providing ACM Support in Device Drivers
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 194 Windows NT DDK

• ACMDM_DRIVER_DETAILS
• ACMDM_FORMAT_DETAILS
• ACMDM_FORMATTAG_DETAILS
• ACMDM_HARDWARE_WAVE_CAPS_INPUT
• ACMDM_HARDWARE_WAVE_CAPS_OUTPUT

A user-mode audio driver that supports ACM messages is, in reality, both a device driver and an
ACM driver. As such, it must be installed twice  once as an audio device driver and once as an
ACM driver. (See Installing Multimedia Drivers and Installing ACM Drivers.)

A driver of this type must be capable of determining when it is being opened as an audio driver
and when it is being opened as an ACM driver. An easy way to make this determination is to
examine the lParam2 argument to DriverProc when a DRV_OPEN message is received. When
the driver is being opened by the ACM, this argument is a pointer to an ACMDRVOPENDESC
structure. When the driver is being opened by any other client, such as winmm.dll or a Control
Panel applet, the lParam2 argument is NULL.

Following is a possible scenario in which the driver is used as both an ACM driver and an audio
driver:

1. A client calls acmDriverDetails (in the ACM) to send an ACMDM_DRIVER_DETAILS
message. The driver sets the specified ACMDRIVERDETAILS structure's
ACMDRIVERDETAILS_SUPPORTF_HARDWARE flag.

2. The client detects this flag and calls acmMetrics (in the ACM), specifying the
ACM_METRIC_HARDWARE_WAVE_OUTPUT flag to obtain a device identifier.

3. The client uses the obtained device identifier as input to waveOutOpen (in winmm.dll), to open
an output stream to a waveform device, and then sends data to the device using
waveOutWrite.

Writing Portable ACM Drivers
Audio Compression Managers are provided for Windows NT® and for Windows 95. The
interfaces provided by both ACMs are identical. You can write binary-compatible ACM drivers that
are portable between Windows NT and Windows 95, by obeying the following rules:

• Do not call API functions that are only available under Windows NT. (Almost all functions
described in the Win32 SDK are available under both Windows NT and Windows 95.)

• Do not compile with the UNICODE constant defined.

The second rule requires further discussion. Windows NT provides Unicode versions of all Win32
API functions, but Windows 95 does not (with a few exceptions). However, ACM drivers must
always pass Unicode strings to the ACM, whether the ACM is running under Windows NT or
Windows 95. To get around this conflict, your ACM driver can include a copy of the
LoadStringCodec function that is defined in the sample ACM drivers.

The LoadStringCodec function loads a string resource and converts the string to Unicode, even
if the source code was not compiled with the UNICODE constant defined. The converted string
can then be passed to the ACM (in an ACMDRIVERDETAILS structure, for example). You can
also convert between Unicode and ANSI strings by calling the MultiByteToWideChar and
WideCharToMultiByte functions that are described in the Win32 SDK.

The sample ACM drivers are written to be binary-compatible with Windows NT and Windows 95.

Guidelines for Writing ACM Drivers
Use the following guidelines when writing an ACM driver:

• Allocate driver instance data when the driver receives a DRV_OPEN message, as explained in
the description of DRV_OPEN.

Guidelines for Writing ACM Drivers
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 195 Windows NT DDK

• Allocate stream instance data when the driver receives an ACMDM_STREAM_OPEN
message, as explained in the description of ACMDM_STREAM_OPEN.

• Do not use global variables. Defining a single DWORD of global data in a DLL allocates 4K of
memory in every process that uses the ACM, because your driver is mapped into the address
space of each process, and global data space is not shared. Instead of using global data,
dynamically allocate local storage space for each driver instance and each stream instance, as
needed.

• Do not link to crtdll.dll, the dynamic-link version of the C runtime library. This DLL cannot be
loaded into all contexts. As a result, your driver will not work correctly for system sounds that
are played by means of the MessageBeep function. Use Win32 API functions instead of C
library functions, or link to a static C runtime library (libc.lib or libcmt.lib).

• Be careful when calling Win32 functions. If your driver is used in conjunction with playing
system sounds, it might get loaded into a context in which these functions fail. This warning
pertains to any Win32 function that requires an instance handle, and possibly other functions.
Notice, for example, that if the samples call LoadString or LoadIcon, they do not test for error
return values. If you strictly follow the model provided by the sample drivers, you will not have
this problem.

ACM Driver Reference
This section describes the messages and structures used by ACM drivers.

Messages, ACM Drivers
This section describes the messages received by ACM drivers. The messages are listed in
alphabetic order. They are defined in msacmdrv.h.

ACMDM_DRIVER_ABOUT
The ACMDM_DRIVER_ABOUT message requests an ACM driver to display its About dialog box.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_DRIVER_ABOUT

lParam1
Contains a validated window handle, which the driver should use to specify the parent window
for the About dialog box. The value can also be -1L (See the Comments section below).

lParam2
Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h. If the driver does not provide an about box, it should return
MMSYSERR_NOTSUPPORTED.

Comments
A client sends the ACMDM_DRIVER_ABOUT message by calling the driver's DriverProc entry
point, passing the specified parameters.

Typically, this message is sent by the Control Panel's Multimedia applet.

ACMDM_DRIVER_ABOUT
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 196 Windows NT DDK

An ACM driver does not have to provide an About dialog box. If it does not, it should always
return MMSYSERR_NOTSUPPORTED in response to this message. The ACM provides a default
About dialog box, which is displayed if the driver does not provide one.

If the driver does provide an About box, it should display it when it receives this message.

If lParam1 is -1L, the driver should not display its About dialog box. It should just return
MMSYSERR_NOERROR if it provides an About box, and MMSYSERR_NOTSUPPORTED if it
does not.

For more information about custom About boxes, see Providing a Custom About Box.

ACMDM_DRIVER_DETAILS
The ACMDM_DRIVER_DETAILS message requests an ACM driver to return detailed information
about itself.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_DRIVER_DETAILS

lParam1
Pointer to an ACMDRIVERDETAILS structure. (ACMDRIVERDETAILS is defined in msacm.h
and described in the Win32 SDK.)

lParam2
Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h.

Comments
A client sends the ACMDM_DRIVER_DETAILS message by calling the driver's DriverProc entry
point, passing the specified parameters. The ACM sends this message when an application calls
acmDriverDetails, which is described in the Win32 SDK.

Before the driver's DriverProc function is called, the ACM verifies that lParam1 contains a valid
pointer and that the ACMDRIVERDETAILS structure's cbStruct member contains a size value of
at least four.

The driver should fill in the ACMDRIVERDETAILS structure members, up to the number of bytes
specified by the cbStruct member.

ACM drivers must support this message.

For more information about custom icons, see Providing a Custom Icon.

ACMDM_DRIVER_NOTIFY
The ACMDM_DRIVER_NOTIFY message notifies an ACM driver of changes to other ACM
drivers.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the

ACMDM_DRIVER_NOTIFY
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 197 Windows NT DDK

DRV_OPEN message.
hDriver

Driver handle.
uMsg

ACMDM_DRIVER_NOTIFY
lParam1

Not used.
lParam2

Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h.

Comments
The ACM sends the ACMDM_DRIVER_NOTIFY message by calling the driver's DriverProc entry
point, passing the specified parameters, each time a client calls the acmDriverAdd,
acmDriverRemove, or acmDriverPriority function. (These functions are described in the Win32
SDK.)

ACM driver support for this message is optional. If the driver supports the message, it can call
ACM API functions, such as acmEnumDrivers and acmMetrics, to determine which drivers have
been added, removed, enabled, disabled, or had their priority changed.

ACMDM_FILTER_DETAILS
The ACMDM_FILTER_DETAILS message requests an ACM driver to return information about a
filter associated with a specified filter tag.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_FILTER_DETAILS

lParam1
Pointer to an ACMFILTERDETAILS structure. (ACMFILTERDETAILS is defined in msacm.h
and described in the Win32 SDK.)

lParam2
Contains one of the following flags, specified by the fdwDetails parameter of the
acmFilterDetails function (described in the Win32 SDK):

Flag Meaning
ACM_FILTERDETAILSF_INDEX Indicates the dwFilterIndex member of the

ACMFILTERDETAILS structure contains a filter
index. The valid index range is from zero to one
less than the cStandardFilters member returned in
the ACMFILTERTAGDETAILS structure for the
filter tag. (See ACMDM_FILTERTAG_DETAILS.)

ACM_FILTERDETAILSF_FILTER Indicates the client has filled in the WAVEFILTER
structure associated with the ACMFILTERDETAILS
structure.

Return Value

ACMDM_FILTER_DETAILS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 198 Windows NT DDK

The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h. Possible error codes include:

Error Code Meaning
MMSYSERR_NOTSUPPORTED The driver does not support filter operations

or the specified query operation.
ACMERR_NOTPOSSIBLE The input parameter values do not represent

a valid filter or filter tag.

Comments
A client sends the ACMDM_FILTER_DETAILS message by calling the driver's DriverProc entry
point, passing the specified parameters. The ACM sends this message when an application calls
acmFilterDetails, which is described in the Win32 SDK.

An ACM driver that provides filters must support this message.

The client can do either of the following:

• Specify a filter index, in order to obtain a description of the filter associated with the index.
• Specify a filter description, in order to validate the filter and obtain the filter's string description.

The client specifies the filter tag in the ACMFILTERDETAILS structure's dwFilterTag member.
The driver returns information for a particular filter belonging to the filter tag, as follows:

• If the ACM_FILTERDETAILSF_INDEX flag is set, the client has specified an index value in the
ACMFILTERDETAILS structure's dwFilterIndex member. The driver fills in the WAVEFILTER
structure for the filter associated with the specified index value. It also fills in the
ACMFILTERDETAILS structure's szFilter, fdwSupport, and cbStruct members.

• If the ACM_FILTERDETAILSF_FILTER flag is set, the client has filled in the WAVEFILTER
structure. The driver validates the structure contents and, if the contents are valid, fills in the
ACMFILTERDETAILS structure's szFilter, fdwSupport, and cbStruct members.

Before calling the driver's DriverProc function, the ACM verifies that:

• The ACMFILTERDETAILS structure and its associated WAVEFILTER structure are readable
and writeable.

• The size of the ACMFILTERDETAILS structure, contained in its cbStruct member, is at least
the structure's defined size. (The structure's size can be larger than its defined size, to allow for
a longer szFilter member or to allow newer, larger structure definitions to be used within
drivers under development.)

• The size of the WAVEFILTER structure pointed to by the ACMFILTERDETAILS structure's
pwfltr member is at least as large as the generic WAVEFILTER structure's defined size. (See
The WAVEFILTER Structure below.)

• The ACMFILTERDETAILS structure's fdwSupport member contains zero.
• The lParam2 parameter contains a valid flag value.

Before returning, the driver must set the ACMFILTERDETAILS structure's cbStruct member to
the actual number of bytes returned. The value returned in cbStruct must not be greater than the
value received from the client.

For more information about filter tags and filter structures, see Format Tags and Filter Tags and
Defining Format Structures and Filter Structures.

The WAVEFILTER Structure
The WAVEFILTER structure is a generic structure for describing a filter. Generally, you will
extend this structure for your specific filter type, as has been done in the Microsoft Audio Filter.
(For examples, see VOLUMEWAVEFILTER and ECHOWAVEFILTER in mmreg.h.) When a
client sends an ACMDM_FILTER_DETAILS message, it specifies the address of a structure that

ACMDM_FILTER_DETAILS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 199 Windows NT DDK

you have defined for the specified filter type. This structure is typically larger than the generic
WAVEFILTER structure.

ACMDM_FILTERTAG_DETAILS
The ACMDM_FILTERTAG_DETAILS message requests an ACM driver to return information
about a filter tag.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_FILTERTAG_DETAILS

lParam1
Pointer to an ACMFILTERTAGDETAILS structure. (ACMFILTERTAGDETAILS is defined in
msacm.h and described in the Win32 SDK.)

lParam2
Contains one of the following flags specified by the fdwDetails parameter of the
acmFilterTagDetails function (described in the Win32 SDK):

Flag Meaning
ACM_FILTERTAGDETAILSF_
INDEX

Indicates the dwFilterTagIndex member of
the ACMFILTERTAGDETAILS structure
contains a filter tag index. The valid index
range is from zero to one less than the
cFilterTags member returned in the driver's
ACMDRIVERDETAILS structure. (See
ACMDM_DRIVER_DETAILS.)
The driver should return details for the filter
tag associated with the index.

ACM_FILTERTAGDETAILSF_
FILTERTAG

Indicates the dwFilterTag member of the
ACMFILTERTAGDETAILS structure contains
a filter tag.
The driver should return details for the
specified filter tag.

ACM_FILTERTAGDETAILSF_
LARGESTSIZE

Indicates the driver should return details for
the filter tag having the largest filter. The
dwFilterTag member of
ACMFILTERTAGDETAILS can contain a filter
tag or WAVE_FILTER_UNKNOWN.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h. Possible error codes include:

Error Code Meaning
MMSYSERR_NOTSUPPORTED The driver does not support filter operations

or the specified query operation.
ACMERR_NOTPOSSIBLE The input parameter values don't represent a

valid filter or filter tag.

Comments

ACMDM_FILTERTAG_DETAILS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 200 Windows NT DDK

A client sends the ACMDM_FILTERTAG_DETAILS message by calling the driver's DriverProc
entry point, passing the specified parameters. The ACM sends this message when an application
calls acmFilterTagDetails, which is described in the Win32 SDK.

An ACM driver that provides filters must support this message.

The client specifies the filter tag in the ACMFILTERTAGDETAILS structure's dwFilterTag
member. The driver returns information for a particular tag, as follows:

• If the ACM_FILTERDETAILSF_INDEX flag is set, the client has specified an index value in the
ACMFILTERTAGDETAILS structure's dwFilterTagIndex member. The driver fills in the
ACMFILTERTAGDETAILS structure for the filter tag associated with the specified index value.

• If the ACM_FILTERTAGDETAILSF_FILTERTAG flag is set, the client has specified a filter tag
in the ACMFILTERTAGDETAILS structure's dwFilterTag member. The driver fills in the
ACMFILTERTAGDETAILS structure for the specified filter tag.

• If the ACM_FILTERTAGDETAILSF_LARGESTSIZE flag is set, the driver does one of two
things:
1. If dwFilterTag contains WAVE_FILTER_UNKNOWN, the driver fills in the

ACMFILTERTAGDETAILS structure for the filter tag having a filter with the largest filter
structure size.

2. If dwFilterTag contains a filter tag, the driver fills in the ACMFILTERTAGDETAILS structure
for that filter tag, describing the filter with the largest structure size belonging to the specified
tag.

Before calling the driver's DriverProc function, the ACM verifies that:

• The ACMFILTERTAGDETAILS structure is readable and writeable.
• The size of the ACMFILTERTAGDETAILS structure, contained in its cbStruct member, is at

least the structure's defined size. (The structure's size can be larger than its defined size, to
allow for a longer szFilterTag member or to allow newer, larger structure definitions to be used
within drivers under development.)

• The ACMFILTERTAGDETAILS structure's fdwSupport member contains zero.
• The lParam2 parameter contains a valid flag value.

Before returning, the driver must set the ACMFILTERTAGDETAILS structure's cbStruct member
to the actual number of bytes returned. The value returned in cbStruct must not be greater than
the value received.

For more information about filter tags, see Format Tags and Filter Tags.

ACMDM_FORMAT_DETAILS
The ACMDM_FORMAT_DETAILS message requests an ACM driver to return information about a
format associated with a specified format tag.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_FORMAT_DETAILS

lParam1
Pointer to an ACMFORMATDETAILS structure. (ACMFORMATDETAILS is defined in
msacm.h and described in the Win32 SDK.)

lParam2
Contains one of the following flags, specified by the fdwDetails parameter of the

ACMDM_FORMAT_DETAILS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 201 Windows NT DDK

acmFormatDetails function, which is described in the Win32 SDK:
Flag Meaning
ACM_FORMATDETAILSF_INDEX Indicates the dwFormatIndex member of the

ACMFORMATDETAILS structure contains a
format index. The valid index range is from
zero to one less than the cStandardFormats
member returned in the
ACMFORMATTAGDETAILS structure for the
format tag. (See
ACMDM_FORMATTAG_DETAILS.)

ACM_FORMATDETAILSF_FORMAT Indicates the client has filled in the
WAVEFORMATEX structure associated with
the ACMFORMATDETAILS structure.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h. Possible error codes include:

Error Code Meaning
MMSYSERR_NOTSUPPORTED The driver does not support the specified

query operation.
ACMERR_NOTPOSSIBLE The input parameter values do not represent

a valid format or format tag.

Comments
A client sends the ACMDM_FORMAT_DETAILS message by calling the driver's DriverProc entry
point, passing the specified parameters. The ACM sends this message when an application calls
the acmFormatDetails function, which is described in the Win32 SDK.

All ACM drivers must support this message.

The client can do either of the following:

• Specify a format index, in order to obtain a description of the format associated with the index.
• Specify a format description, in order to validate the format and obtain the format's string

description.

The client specifies the format tag in the ACMFORMATDETAILS structure's dwFormatTag
member. The driver returns information for a particular format belonging to the format tag, as
follows:

• If the ACM_FORMATDETAILSF_INDEX flag is set, the client has specified an index value in
the ACMFORMATDETAILS structure's dwFormatIndex member. The driver fills in the
WAVEFORMATEX structure for the format associated with the specified index value. It also
fills in the ACMFORMATDETAILS structure's szFormat, fdwSupport, and cbStruct members.

• If the ACM_FORMATDETAILSF_FORMAT flag is set, the client has filled in the
WAVEFORMATEX structure. The driver validates the structure contents and, if the contents
are valid, fills in the ACMFORMATDETAILS structure's szFormat, fdwSupport, and cbStruct
members.

Before calling the driver's DriverProc function, the ACM verifies that:

• The ACMFORMATDETAILS structure and its associated WAVEFORMATEX structure are
readable and writeable.

• The size of the ACMFORMATDETAILS structure (contained in its cbStruct member) is at least
the structure's defined size. (The structure's size can be larger than its defined size, to allow for
a longer szFormat member or to allow newer, larger structure definitions to be used within
drivers under development.)

ACMDM_FORMAT_DETAILS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 202 Windows NT DDK

• The size of the WAVEFORMATEX structure associated with the ACMFORMATDETAILS
structure's pwfx member is at least as large as the generic WAVEFORMATEX structure's
defined size. (See The WAVEFORMATEX Structure below.)

• The ACMFORMATDETAILS structure's fdwSupport member contains zero.
• The lParam2 parameter contains a valid flag value.

Before returning, the driver must set the ACMFORMATDETAILS structure's cbStruct member to
the actual number of bytes returned. The value returned in cbStruct must not be greater than the
value received.

The WAVEFORMATEX Structure
The WAVEFORMATEX structure is a generic structure for describing a waveform format.
Generally, you will use this structure as a basis for defining structures for your specific format
types, as has been done in the IMA ADPCM Audio Codec. (For an example, see
IMAADPCMWAVEFORMAT in mmreg.h.) When a client sends an ACMDM_FORMAT_DETAILS
message, it specifies the address of a structure that you have defined for the specified format
type. This structure is typically larger than the generic WAVEFORMATEX structure.

For more information about format tags and format structures, see Format Tags and Filter Tags
and Defining Format Structures and Filter Structures.

Returning a Description String
The WAVEFORMATEX structure's szFormat member is used for returning a format description
string. If an ACM driver returns a zero-length string in szFormat, the ACM creates an
internationalized description string for the format. This string includes the format's speed (in Hz),
bit depth, and channel setting (mono or stereo), based on the contents of the nSamplesPerSec,
wBitsPerSample, and nChannels members of the WAVEFORMATEX structure. If
wBitsPerSample contains zero, the ACM does not include the bit depth in the description string.
You can provide your own description string and return it in szFormat, but allowing ACM to
generate an internationalized string is preferred.

ACMDM_FORMAT_SUGGEST
The ACMDM_FORMAT_SUGGEST message requests an ACM driver to suggest a destination
format for a conversion, given a specified source format.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_FORMAT_SUGGEST

lParam1
Pointer to an ACMDRVFORMATSUGGEST structure. (ACMDRVFORMATSUGGEST is
defined in msacmdrv.h.)

lParam2
Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h. Possible error codes include:

Error Code Meaning
MMSYSERR_NOTSUPPORTED The driver does not support format

ACMDM_FORMAT_SUGGEST
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 203 Windows NT DDK

suggestion operations.
ACMERR_NOTPOSSIBLE The driver cannot suggest a destination

format, based on the specified source format
and restriction flags.

Comments
A client sends the ACMDM_FORMAT_SUGGEST message by calling the driver's DriverProc
entry point, passing the specified parameters. The ACM sends this message when an application
calls the acmFormatSuggest function, which is described in the Win32 SDK.

All ACM drivers that provide stream conversions must support this message.

The ACMDRVFORMATSUGGEST structure contains pointers to two WAVEFORMATEX
structures. One of these structures describes the client-specified source format. The other
structure is used by the driver to return a suggested destination format. The client might specify
values for some of the destination structure members, in order to restrict the possible
suggestions. For more information, see the description of ACMDRVFORMATSUGGEST.

Given the specified source format and destination restrictions (if any), the driver determines if it
can provide a conversion from the specified source format to some destination format. If it can, it
returns a description of that format in the destination WAVEFORMATEX structure.

Before calling the driver's DriverProc function, the ACM verifies that:

• The flag values contained in the ACMDRVFORMATSUGGEST structure are valid.
• The WAVEFORMATEX structure containing the source format description is readable.
• The WAVEFORMATEX structure specified for receiving the suggested destination format

description is writeable.

• The destination WAVEFORMATEX structure's size, contained in the
ACMDRVFORMATSUGGEST structure's cbwfxDst member, is large enough to receive a
format structure for an appropriate destination format.

ACMDM_FORMATTAG_DETAILS
The ACMDM_FORMATTAG_DETAILS message requests an ACM driver to return information
about a format tag.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_FORMATTAG_DETAILS

lParam1
Pointer to an ACMFORMATTAGDETAILS structure. (ACMFORMATTAGDETAILS is defined in
msacm.h and described in the Win32 SDK.)

lParam2
Contains one of the following flags, specified by the fdwDetails parameter of the
acmFormatTagDetails function, which is described in the Win32 SDK:

Flag Meaning
ACM_FORMATTAGDETAILSF_
INDEX

Indicates the dwFormatTagIndex member of
the ACMFORMATTAGDETAILS structure
contains a format tag index. The valid index
range is from zero to one less than the
cFormatTags member returned in the

ACMDM_FORMATTAG_DETAILS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 204 Windows NT DDK

driver's ACMDRIVERDETAILS structure.
(See ACMDM_DRIVER_DETAILS.)
The driver should return details for the format
tag associated with the index.

ACM_FORMATTAGDETAILSF_
FORMATTAG

Indicates the dwFormatTag member of the
ACMFORMATTAGDETAILS structure
contains a format tag.
The driver should return details for the
specified format tag.

ACM_FORMATTAGDETAILSF_
LARGESTSIZE

Indicates the driver should return details for
the format tag having the largest format. The
dwFormatTag member of
ACMFORMATTAGDETAILS can contain a
format tag or WAVE_FORMAT_UNKNOWN.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h. Possible error codes include:

Error Code Meaning
MMSYSERR_NOTSUPPORTED The driver does not support the specified

query operation.
ACMERR_NOTPOSSIBLE The input parameter values do not represent

a valid format or format tag.

Comments
A client sends the ACMDM_FORMATTAG_DETAILS message by calling the driver's DriverProc
entry point, passing the specified parameters. The ACM sends this message when an application
calls the acmFormatTagDetails function, which is described the Win32 SDK.

All ACM drivers must support this message.

The client specifies the format tag in the ACMFORMATTAGDETAILS structure's dwFormatTag
member. The driver returns information for a particular tag, as follows:

• If the ACM_FORMATDETAILSF_INDEX flag is set, the client has specified an index value in
the ACMFORMATTAGDETAILS structure's dwFormatTagIndex member. The driver fills in
the ACMFORMATTAGDETAILS structure for the format tag associated with the specified
index value.

• If the ACM_FORMATTAGDETAILSF_FORMATTAG flag is set, the client has specified a
format tag in the ACMFORMATTAGDETAILS structure's dwFormatTag member. The driver
fills in the ACMFORMATTAGDETAILS structure for the specified format tag.

• If the ACM_FORMATTAGDETAILSF_LARGESTSIZE flag is set, the driver does one of two
things:
1. If dwFormatTag contains WAVE_FORMAT_UNKNOWN, the driver fills in the

ACMFORMATTAGDETAILS structure for the format tag that has a format with the largest
format structure size.

2. If dwFormatTag contains a format tag, the driver fills in the ACMFORMATTAGDETAILS
structure for that format tag, describing the format with the largest structure size belonging
to the specified tag.

Before calling the driver's DriverProc function, the ACM verifies that:

• The ACMFORMATTAGDETAILS structure is readable and writeable.
• The size of the ACMFORMATTAGDETAILS structure (contained in its cbStruct member) is at

least the structure's defined size. (The structure's size can be larger than its defined size, to

ACMDM_FORMATTAG_DETAILS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 205 Windows NT DDK

allow for a longer szFormatTag member or to allow newer, larger structure definitions to be
used within drivers under development.)

• The ACMFORMATTAGDETAILS structure's fdwSupport member contains zero.
• The lParam2 parameter contains a valid flag value.

If the format tag is WAVE_FORMAT_PCM, then the driver should return a zero-length string in
szFormatTag. The ACM provides a description string for this format.

Before returning, the driver must set the ACMFORMATTAGDETAILS structure's cbStruct
member to the actual number of bytes returned. The value returned in cbStruct must not be
greater than the value received.

For more information about format tags, see Format Tags and Filter Tags.

ACMDM_HARDWARE_WAVE_CAPS_INPUT
The ACMDM_HARDWARE_WAVE_CAPS_INPUT message requests an ACM driver to return
hardware capabilities for a waveform input device.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_HARDWARE_WAVE_CAPS_INPUT

lParam1
Pointer to a WAVEINCAPS structure. (WAVEINCAPS is defined in mmsystem.h and described
in the Win32 SDK.)

lParam2
Size of the WAVEINCAPS structure pointed to by lParam1.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h. If the driver does not support waveform hardware, it should return
MMSYSERR_NOTSUPPORTED.

Comments
The ACM sends the ACMDM_HARDWARE_WAVE_CAPS_INPUT message by calling the
driver's DriverProc entry point, passing the specified parameters, each time a client calls the
acmMetrics function with the ACM_METRIC_HARDWARE_WAVE_INPUT index argument. (The
acmMetrics function is described in the Win32 SDK.)

The driver receives the address of a WAVEINCAPS structure. The driver must fill in the structure.

Only ACM drivers that provide access to waveform input hardware need to support this message.
If your driver supports the message, it must return
ACMDRIVERDETAILS_SUPPORTF_HARDWARE in the ACMDRIVERDETAILS structure
provided with the ACMDM_DRIVER_DETAILS message. For more information, see Providing
ACM Support in Device Drivers.

ACMDM_HARDWARE_WAVE_CAPS_OUTPUT
The ACMDM_HARDWARE_WAVE_CAPS_OUTPUT message requests an ACM driver to return
hardware capabilities for a waveform output device.

ACMDM_HARDWARE_WAVE_CAPS_OUTPUT
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 206 Windows NT DDK

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_HARDWARE_WAVE_CAPS_OUTPUT

lParam1
Pointer to a WAVEOUTCAPS structure. (WAVEOUTCAPS is defined in mmsystem.h and
described in the Win32 SDK.)

lParam2
Size of the WAVEOUTCAPS structure pointed to by lParam1.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h. If the driver does not support waveform hardware, it should return
MMSYSERR_NOTSUPPORTED.

Comments
The ACM sends the ACMDM_HARDWARE_WAVE_CAPS_OUTPUT message by calling the
driver's DriverProc entry point, passing the specified parameters, each time a client calls the
acmMetrics function with the ACM_METRIC_HARDWARE_WAVE_OUTPUT index argument.
(The acmMetrics function is described in the Win32 SDK.)

The driver receives the address of a WAVEOUTCAPS structure. The driver must fill in the
structure.

Only ACM drivers that provide access to waveform output hardware need to support this
message. If your driver supports the message, it must return
ACMDRIVERDETAILS_SUPPORTF_HARDWARE in the ACMDRIVERDETAILS structure
provided with the ACMDM_DRIVER_DETAILS message. For more information, see Providing
ACM Support in Device Drivers.

ACMDM_STREAM_CLOSE
The ACMDM_STREAM_CLOSE message requests an ACM driver to close a conversion stream
that was opened with an ACMDM_STREAM_OPEN message.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_STREAM_CLOSE

lParam1
Pointer to an ACMDRVSTREAMINSTANCE structure.

lParam2
Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error

ACMDM_STREAM_CLOSE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 207 Windows NT DDK

codes defined in msacm.h. An asynchronous driver might have to return ACMERR_BUSY if a
conversion operation has not completed.

Comments
A client sends the ACMDM_STREAM_CLOSE message by calling the driver's DriverProc entry
point, passing the specified parameters. The ACM sends this message when an application calls
the acmStreamClose function, which is described in the Win32 SDK.

All ACM drivers that provide stream conversions must support this message. For more
information about stream conversions, see Converting Data Streams.

If the driver supports asynchronous operations, and if the client has specified the
ACM_STREAMOPENF_ASYNC flag (contained in the ACMDRVSTREAMINSTANCE structure's
fdwOpen member), then the driver should send the client an MM_ACM_CLOSE callback
message, by calling the DriverCallback function, after the operation completes.

ACMDM_STREAM_CONVERT
The ACMDM_STREAM_CONVERT message requests a ACM driver to perform a conversion
operation on a specified conversion stream.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_STREAM_CONVERT

lParam1
Pointer to an ACMDRVSTREAMINSTANCE structure.

lParam2
Pointer to an ACMDRVSTREAMHEADER structure.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h.

Comments
A client sends the ACMDM_STREAM_CONVERT message by calling the driver's DriverProc
entry point, passing the specified parameters. The ACM sends this message when an application
calls the acmStreamConvert function, which is described in the Win32 SDK.

All ACM drivers that provide stream conversions must support this message. For more
information about stream conversions, see Converting Data Streams.

The ACMDRVSTREAMINSTANCE structure received with this message is the same structure
that was received with a previous ACMDM_STREAM_OPEN message. The driver does not need
to validate the structure's contents again.

The ACMDRVSTREAMHEADER structure identifies the source and destination data buffers. The
source buffer contains the data to be converted. The driver places converted data into the
destination buffer.

The driver must check the flags in the ACMDRVSTREAMHEADER structure's fdwConvert
member. These flags indicate how converted data should be returned.

Because stream conversions are time-critical operations, ACMDM_STREAM_CONVERT
messages must be processed efficiently. The driver should perform as much processing as

ACMDM_STREAM_CONVERT
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 208 Windows NT DDK

possible in response to the ACMDM_STREAM_OPEN message.

If the driver supports asynchronous operations, and if the client has specified the
ACM_STREAMOPENF_ASYNC flag (contained in the ACMDRVSTREAMINSTANCE structure's
fdwOpen member), then the driver must do the following when it has finished converting the data
in the source buffer:

• Set the ACMDRVSTREAMHEADER structure's ACMSTREAMHEADER_STATUSF_DONE
flag.

• Send the client an MM_ACM_DONE callback message, by calling the DriverCallback function.

Asynchronous drivers can make use of the ACMDRVSTREAMHEADER structure's
ACMSTREAMHEADER_STATUSF_INQUEUE flag, along with the structure's padshNext
member, to maintain a conversion queue of stream header structures.

Before calling the driver's DriverProc function, the ACM verifies that:

• The ACMDRVSTREAMHEADER structure is readable and writeable, and of the proper size.
• The ACMDRVSTREAMHEADER structure's fdwConvert member contains valid flag values.
• The ACMDRVSTREAMHEADER structure's buffers have been prepared (see

ACMDM_STREAM_PREPARE), and the specified buffer sizes are not larger than their
prepared sizes.

• The ACMDRVSTREAMHEADER structure is not currently in an asynchronous driver's
conversion queue. (That is, the structure's ACMSTREAMHEADER_STATUSF_INQUEUE flag
is not set.)

ACMDM_STREAM_OPEN
The ACMDM_STREAM_OPEN message requests an ACM driver to either open a conversion
stream or indicate whether the specified conversion is supported.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_STREAM_OPEN

lParam1
Pointer to an ACMDRVSTREAMINSTANCE structure.

lParam2
Not used.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h. If a specified conversion is not supported, the driver should return
ACMERR_NOTPOSSIBLE.

Comments
A client sends the ACMDM_STREAM_OPEN message by calling the driver's DriverProc entry
point, passing the specified parameters. The ACM sends this message when an application calls
the acmStreamOpen function, which is described in the Win32 SDK.

All ACM drivers that provide stream conversions must support this message. For more
information about stream conversions, see Converting Data Streams.

If the client has specified the ACM_STREAMOPENF_QUERY flag (contained in the

ACMDM_STREAM_OPEN
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 209 Windows NT DDK

ACMDRVSTREAMINSTANCE structure's fdwOpen member), then the driver should not open a
stream instance. It should return MMSYSERR_NOERROR if the conversion is possible, and
MMSYSERR_NOTPOSSIBLE otherwise.

When a driver receives an ACMDM_STREAM_OPEN message, it should first determine if it can
perform the specified conversion. If it can, then it should perform instance initialization operations
for the stream, such as determining which conversion routines to use and allocating
instance-specific resources.

Store stream instance data in a local, dynamically allocated structure. Store a pointer to the
structure in the ACMDRVSTREAMINSTANCE structure's dwDriver member.

If the driver supports asynchronous operations, and if the client has specified the
ACM_STREAMOPENF_ASYNC flag (contained in the ACMDRVSTREAMINSTANCE structure's
fdwOpen member), then the driver should send the client an MM_ACM_OPEN callback
message, by calling the DriverCallback function, after the operation completes.

Before calling the driver's DriverProc function, the ACM verifies that:

• The ACMDRVSTREAMINSTANCE structure's fdwOpen member contains valid flag values.
• The source and destination WAVEFORMATEX structures are readable.
• If a WAVEFILTER structure is specified, it is readable and the source and destination format

structures contain identical information.

• If the client has specified different source and destination format tags, then the driver has
declared itself to be a codec by setting ACMDRIVERDETAILS_SUPPORTF_CODEC in the
ACMDRIVERDETAILS structure's fdwSupport member. (See ACMDM_DRIVER_DETAILS.)

• If the client has specified source and destination formats associated with a single format tag,
then the driver has declared itself to be a converter by setting
ACMDRIVERDETAILS_SUPPORTF_CONVERTER in the ACMDRIVERDETAILS structure's
fdwSupport member. (See ACMDM_DRIVER_DETAILS.)

• If the client has specified a filter operation, then the driver has declared itself to be a filter by
setting ACMDRIVERDETAILS_SUPPORTF_FILTER in the ACMDRIVERDETAILS structure's
fdwSupport member. (See ACMDM_DRIVER_DETAILS.)

If the client has specified the ACM_STREAMOPENF_NONREALTIME flag (contained in the
ACMDRVSTREAMINSTANCE structure's fdwOpen member), then the driver can perform the
conversion without time constraints. However, if this flag is not specified, and the driver cannot
perform the conversion in real time, then it should return ACMERR_NOTPOSSIBLE. For more
information, see Real Time Conversions.

ACMDM_STREAM_PREPARE
The ACMDM_STREAM_PREPARE message requests an ACM driver to prepare the buffers
associated with an ACMDRVSTREAMHEADER structure for use.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_STREAM_PREPARE

lParam1
Pointer to an ACMDRVSTREAMINSTANCE structure.

lParam2
Pointer to an ACMDRVSTREAMHEADER structure.

ACMDM_STREAM_PREPARE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 210 Windows NT DDK

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h.

Comments
A client sends the ACMDM_STREAM_PREPARE message by calling the driver's DriverProc
entry point, passing the specified parameters. The ACM sends this message when an application
calls the acmStreamPrepareHeader function, which is described in the Win32 SDK.

Support for this message is optional. If a driver supports ACMDM_STREAM_PREPARE, it must
support ACMDM_STREAM_UNPREPARE.

If the driver returns MMSYSERR_NOTSUPPORTED, the ACM prepares the buffers for use. For
most drivers, this behavior is sufficient. If the driver does perform buffer preparation, it should
return MMSYSERR_NOERROR. In either case, the ACM sets
ACMSTREAMHEADER_STATUSF_PREPARED in the ACMDRVSTREAMHEADER structure's
fdwStatus member. The driver never modifies this flag. (If you want both your driver and the
ACM to perform buffer preparation operations, the driver should return
MMSYSERR_NOTSUPPORTED after performing its preparation activity. The ACM can then also
perform its preparation operation.)

Before calling the driver's DriverProc function, the ACM verifies that:

• The ACMDRVSTREAMHEADER structure is readable and writeable.
• The ACMDRVSTREAMHEADER structure's cbStruct member contains a size value that is at

least as large as the structure's defined size.

• The specified buffers have not already been prepared.

For more information about the use of ACMDM_STREAM_PREPARE, see Converting Data
Streams.

ACMDM_STREAM_RESET
The ACMDM_STREAM_RESET message requests an ACM driver to stop conversion operations
for the specified stream.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_STREAM_RESET

lParam1
Pointer to an ACMDRVSTREAMINSTANCE structure.

lParam2
Contains the fdwReset argument to the acmStreamReset function.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h.

Comments
A client sends the ACMDM_STREAM_RESET message by calling the driver's DriverProc entry
point, passing the specified parameters. The ACM sends this message when an application calls

ACMDM_STREAM_RESET
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 211 Windows NT DDK

the acmStreamReset function, which is described in the Win32 SDK.

Only asynchronous drivers receive this message. If a client calls acmStreamReset for a
synchronous driver, the ACM returns MMSYSERR_NOERROR without calling the driver.

When an asynchronous driver receives this message, it should set the
ACMSTREAMHEADER_STATUSF_DONE flag, and clear the
ACMSTREAMHEADER_STATUSF_INQUEUE flag, in every ACMDRVSTREAMHEADER
structure contained in its conversion queue.

For more information about stream conversions, see Converting Data Streams.

ACMDM_STREAM_SIZE
The ACMDM_STREAM_SIZE message requests an ACM driver to return the size required for a
source (or destination) buffer, given a specified destination (or source) buffer size along with
source and destination format descriptions.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_STREAM_SIZE

lParam1
Pointer to an ACMDRVSTREAMINSTANCE structure.

lParam2
Pointer to an ACMDRVSTREAMSIZE structure.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h.

Comments
A client sends the ACMDM_STREAM_SIZE message by calling the driver's DriverProc entry
point, passing the specified parameters. The ACM sends this message when an application calls
the acmStreamSize function, which is described in the Win32 SDK.

All ACM drivers that provide stream conversions must support this message. For more
information about stream conversions, see Converting Data Streams.

Based on the input arguments, the driver must answer one of the following questions:

• Given a specified source buffer size, how large does a destination buffer need to be in order to
hold all of the converted data?

• Given a specified destination buffer size, what is the largest amount of source data that can
specified without overflowing the destination buffer?

The ACMDRVSTREAMINSTANCE structure received with this message is the same structure
that was received with a previous ACMDM_STREAM_OPEN message. The driver does not need
to validate the structure's contents again.

The driver examines the ACMDRVSTREAMSIZE structure to determine which buffer (source or
destination) the client has supplied. The ACMDRVSTREAMINSTANCE structure contains
structures that describe the source and destination formats, and, possibly, a filter specification.
The driver uses this information to determine the size of the requested buffer.

If the driver returns a buffer length of zero, the ACM provides an error return code of

ACMDM_STREAM_SIZE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 212 Windows NT DDK

ACMERR_NOTPOSSIBLE to acmStreamSize.

ACMDM_STREAM_UNPREPARE
The ACMDM_STREAM_UNPREPARE message requests an ACM driver to clear the preparation
of the buffers associated with an ACMDRVSTREAMHEADER structure.

Parameters
dwDriverID

Driver instance identifier. This is the value returned by the driver in response to the
DRV_OPEN message.

hDriver
Driver handle.

uMsg
ACMDM_STREAM_UNPREPARE

lParam1
Pointer to an ACMDRVSTREAMINSTANCE structure.

lParam2
Pointer to an ACMDRVSTREAMHEADER structure.

Return Value
The driver should return MMSYSERR_NOERROR if the operation succeeds. Otherwise it should
return one of the MMSYSERR error codes defined in mmsystem.h, or one of the ACMERR error
codes defined in msacm.h.

Comments
A client sends the ACMDM_STREAM_UNPREPARE message by calling the driver's DriverProc
entry point, passing the specified parameters. The ACM sends this message when an application
calls the acmStreamUnprepareHeader function, which is described in the Win32 SDK.

Support for this message is optional. If a driver supports ACMDM_STREAM_PREPARE, it must
support ACMDM_STREAM_UNPREPARE.

If the driver returns MMSYSERR_NOTSUPPORTED, the ACM clears the buffer preparation. For
most drivers, this behavior is sufficient. If the driver does clear buffer preparation, it should return
MMSYSERR_NOERROR. In either case, the ACM clears
ACMSTREAMHEADER_STATUSF_PREPARED in the ACMDRVSTREAMHEADER structure's
fdwStatus member. The driver never modifies this flag. (If you want both your driver and the
ACM to clear buffer preparations, the driver should return MMSYSERR_NOTSUPPORTED after
clearing its preparation. The ACM can then also clear its preparation.)

Before calling the driver's DriverProc function, the ACM verifies that:

• The ACMDRVSTREAMHEADER structure is readable and writeable.
• The ACMDRVSTREAMHEADER structure's cbStruct member contains a size value that is at

least as large as the structure's defined size.

• The buffers have been previously prepared.
• The buffer addresses and sizes match those specified when these buffers were prepared.
• The buffers are not currently in use by an asynchronous driver, based on the

ACMDRVSTREAMHEADER structure's ACMSTREAMHEADER_STATUSF_INQUEUE flag
value.

For more information about the use of ACMDM_STREAM_UNPREPARE, see Converting Data
Streams.

MM_ACM_CLOSE
The MM_ACM_CLOSE callback message notifies a client that an asynchronous ACM driver has

MM_ACM_CLOSE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 213 Windows NT DDK

finished processing an ACMDM_STREAM_CLOSE message.

Parameters
dwMsg

MM_ACM_CLOSE
dwParam1

NULL
dwParam2

NULL

Comments
An asynchronous ACM driver sends an MM_ACM_CLOSE message to its client, by means of a
callback, when the driver finishes processing an ACMDM_STREAM_CLOSE message. The driver
sends the message to the client by calling DriverCallback, passing the specified parameters.

For more information about the use of MM_ACM_CLOSE, see Notifying Clients from ACM
Drivers and Converting Data Streams.

MM_ACM_DONE
The MM_ACM_DONE callback message notifies a client that an asynchronous ACM driver has
finished processing an ACMDM_STREAM_CONVERT message.

Parameters
dwMsg

MM_ACM_DONE
dwParam1

Address of the ACMDRVSTREAMHEADER structure that was received with the
ACMDM_STREAM_CONVERT message.

dwParam2
NULL

Comments
An asynchronous ACM driver sends an MM_ACM_DONE message to its client, by means of a
callback, when the driver finishes processing an ACMDM_STREAM_CONVERT message. The
driver sends the message to the client by calling DriverCallback, passing the specified
parameters.

For more information about the use of MM_ACM_DONE, see Notifying Clients from ACM Drivers
and Converting Data Streams.

MM_ACM_OPEN
The MM_ACM_OPEN callback message notifies a client that an asynchronous ACM driver has
finished processing an ACMDM_STREAM_OPEN message.

Parameters
dwMsg

MM_ACM_OPEN
dwParam1

NULL
dwParam2

NULL

Comments
An asynchronous ACM driver sends an MM_ACM_OPEN message to its client, by means of a
callback, when the driver finishes processing an ACMDM_STREAM_OPEN message. The driver

MM_ACM_OPEN
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 214 Windows NT DDK

sends the message to the client by calling DriverCallback, passing the specified parameters.

For more information about the use of MM_ACM_OPEN, see Notifying Clients from ACM Drivers
and Converting Data Streams.

Structures, ACM Drivers
This section describes the structures used by ACM drivers. The structures are listed in
alphabetical order.

ACMDRVFORMATSUGGEST
typedef struct {
 DWORD cbStruct;
 DWORD fdwSuggest;
 LPWAVEFORMATEX pwfxSrc;
 DWORD cbwfxSrc;
 LPWAVEFORMATEX pwfxDst;
 DWORD cbwfxDst;
} ACMDRVFORMATSUGGEST;

The ACMDRVFORMATSUGGEST structure contains client-specified input arguments to the
acmFormatSuggest function. The ACM fills in this structure with the client's input arguments and
passes it to an ACM driver with an ACMDM_FORMAT_SUGGEST message.
ACMDRVFORMATSUGGEST is defined in msacmdrv.h.

Members
cbStruct

Size, in bytes, of the ACMDRVFORMATSUGGEST structure.
fdwSuggest

Contains restriction flags that limit the possible destination formats. Can contain any
combination of the following flags.

Flag Meaning
ACM_FORMATSUGGESTF_
WFORMATTAG

The wFormatTag member of the WAVEFORMATEX
structure pointed to by pwfxDst contains a format tag.
The driver can only suggest a destination format that is
associated with the specified format tag.

ACM_FORMATSUGGESTF_
NCHANNELS

The nChannels member of the WAVEFORMATEX
structure pointed to by pwfxDst contains a channel
value. The driver can only suggest a destination format
whose channel value matches the specified value.

ACM_FORMATSUGGESTF_
NSAMPLESPERSEC

The nSamplesPerSec member of the
WAVEFORMATEX structure pointed to by pwfxDst
contains a sample rate. The driver can only suggest a
destination format whose sample rate matches the
specified rate.

ACM_FORMATSUGGESTF_
WBITSPERSAMPLE

The nBitsPerSample member of the WAVEFORMATEX
structure pointed to by pwfxDst contains a sample size.
The driver can only suggest a destination format whose
sample size matches the specified size.

pwfxSrc
Pointer to a WAVEFORMATEX structure describing the source format.

cbwfxSrc
Size, in bytes, of the WAVEFORMATEX structure pointed to by pwfxSrc.

pwfxDst
Pointer to a WAVEFORMATEX structure to receive the suggested destination format

ACMDRVFORMATSUGGEST
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 215 Windows NT DDK

description. If flags in the fdwSuggest member are set, corresponding members of this
structure contain client-specified values. The driver should fill in all empty structure members.

cbwfxDst
Size, in bytes, of the WAVEFORMATEX structure pointed to by pwfxDst. The driver cannot
return an extended WAVEFORMATEX structure (see the Comments section) that is larger
than this size.

Comments
The WAVEFORMATEX structures specified for source or destination formats might be extended
structures defined for particular formats. (For example, see IMAADPCMWAVEFORMAT in
mmreg.h.) Check the structure's wFormatTag member to determine the format type and hence
the specific structure being passed.

For more information about format structures, see Defining Format Structures and Filter
Structures.

ACMDRVOPENDESC
typedef struct {
 DWORD cbStruct;
 FOURCC fccType;
 FOURCC fccComp;
 DWORD dwVersion;
 DWORD dwFlags;
 DWORD dwError;
 LPCSTR pszSectionName;
 LPCSTR pszAliasName;
 DWORD dnDevNode;
} ACMDRVOPENDESC;
The ACMDRVOPENDESC structure is used by the ACM for passing information to an ACM
driver, when the ACM sends the driver a DRV_OPEN message. ACMDRVOPENDESC is defined
in msacmdrv.h.

Members
cbStruct

Size, in bytes, of the ACMDRVOPENDESC structure.
fccType

Contains a four-character code identifying the driver type. The driver must compare this value
with ACMDRIVERDETAILS_FCCTYPE_AUDIOCODEC, which is defined in msacm.h to equal
the string "audc". If the member contents does not match this string, the driver must fail the
open request by specifying a DriverProc return value of zero.

fccComp
Not used. Defined to contain a four-character code identifying the driver sub-type.

dwVersion
Contains the ACM's version number. The version number's format is 0xAABBCCCC, where AA
is the major version number, BB is the minor version number, and CCCC is the build number.
This value is also returned by the ACM's acmGetVersion function, described in the Win32
SDK.

dwFlags
Contains flags. This member is identical to the fdwOpen argument passed to acmDriverOpen.
No flags are currently defined.

dwError
Used by drivers to supply an error code. User-mode drivers are restricted to specifying a
DriverProc return value of zero for all error types. To provide better error resolution, ACM
drivers can specify an error code in this member, if they set the DriverProc function's return
value to zero. The error code can be one of the MMSYSERR error codes defined in
mmsystem.h, or one of the ACMERR error codes defined in msacm.h.

ACMDRVOPENDESC
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 216 Windows NT DDK

pszSectionName
Contains the registry key under which the driver's alias is stored. For more information, see
Installing ACM Drivers.

pszAliasName
Contains the driver's alias. This is the driver's "msacm.alias" entry in the registry. For more
information, see Installing ACM Drivers.

dnDevNode
Device node ID.

Comments
When the ACM calls an ACM driver's DriverProc entry point and specifies a DRV_OPEN
message, it includes an ACMDRVOPENDESC structure as the lParam2 parameter to DriverProc.
The ACM sends a DRV_OPEN message when an application calls the acmDriverOpen function,
which is described in the Win32 SDK. For additional information, see DriverProc in ACM Drivers.

ACM drivers do not always receive this structure when they receive a DRV_OPEN message.
They only receive the structure if they are called by the ACM. Circumstances in which a driver is
not called by the ACM are as follows:

• The driver might be called by a Control Panel applet for configuration purposes.
• The driver might be designed to be both an ACM driver and an audio device driver. When such

a driver is called by winmm.dll for device operations, it does not receive the structure. (For
more information, see Providing ACM Support in Device Drivers.)

ACMDRVSTREAMHEADER
typedef struct {
 DWORD cbStruct;
 DWORD fdwStatus;
 DWORD dwUser;
 LPBYTE pbSrc;
 DWORD cbSrcLength;
 DWORD cbSrcLengthUsed;
 DWORD dwSrcUser;
 LPBYTE pbDst;
 DWORD cbDstLength;
 DWORD cbDstLengthUsed;
 DWORD dwDstUser;
 DWORD fdwConvert;
 LPACMDRVSTREAMHEADER padshNext;
 DWORD fdwDriver;
 DWORD dwDriver;
 DWORD fdwPrepared;
 DWORD dwPrepared;
 LPBYTE pbPreparedSrc;
 DWORD cbPreparedSrcLength;
 LPBYTE pbPreparedDst;
 DWORD cbPreparedDstLength;
} ACMDRVSTREAMHEADER;

The ACMDRVSTREAMHEADER structure describes a source buffer and a destination buffer
associated with a conversion stream. The structure is used with the
ACMDM_STREAM_PREPARE, ACMDM_STREAM_UNPREPARE, and
ACMDM_STREAM_CONVERT messages. ACMDRVSTREAMHEADER is defined in msacmdrv.h.

Members
cbStruct

Contains the size, in bytes, of the ACMDRVSTREAMHEADER structure.

ACMDRVSTREAMHEADER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 217 Windows NT DDK

fdwStatus
Contains status flags. The defined flags are as follows:

Flag Meaning
ACMSTREAMHEADER_
STATUSF_DONE

Indicates that a conversion is complete. For synchronous
conversion, the ACM sets this flag when the driver
returns from an ACMDM_STREAM_CONVERT
message. For asynchronous drivers, the driver sets this
flag after the data has been converted. The ACM clears
the flag before sending each
ACMDM_STREAM_CONVERT message.

ACMSTREAMHEADER_
STATUSF_PREPARED

Indicates that the data buffers have been prepared. This
flag is set by the ACM, regardless of whether the driver or
the ACM prepared the buffers. See
ACMDM_STREAM_PREPARE and
ACMDM_STREAM_UNPREPARE.

ACMSTREAMHEADER_
STATUSF_INQUEUE

Used by the driver, during asynchronous conversions, to
indicate the structure has been queued for conversion.
The driver is responsible for setting and clearing this flag.
See ACMDM_STREAM_CONVERT.

dwUser
Contains information supplied by a client for its own use.

pbSrc
Pointer to a source buffer. For an ACMDM_STREAM_CONVERT message, this buffer
contains the data to be converted.

cbSrcLength
Length, in bytes, of the source buffer pointed to by pbSrc. For the
ACMDM_STREAM_PREPARE and ACMDM_STREAM_UNPREPARE messages, this value
represents the maximum source buffer size. For ACMDM_STREAM_CONVERT, this value
represents the length of the data in the buffer.

cbSrcLengthUsed
Length, in bytes, of source data that has been converted. This value is set by the driver to
indicate the number of bytes in the source buffer that the driver actually converted. The value
cannot be greater than the value in cbSrcLength.

dwSrcUser
Contains information supplied by a client for its own use.

pbDst
Pointer to a destination buffer. For an ACMDM_STREAM_CONVERT message, the driver fills
this buffer with converted data.

cbDstLength
Length, in bytes, of the destination buffer pointed to by pbDst.

cbDstLengthUsed
Length, in bytes, of destination data that has been converted. This value is set by the driver to
indicate the number of converted bytes that it has placed in the destination buffer. The value
cannot be greater than the value in cbDstLength. If the conversion fails, the driver must set
this value to zero.

dwDstUser
Contains information supplied by a client for its own use.

fdwConvert
Contains one of the following values:

• For the ACMDM_STREAM_PREPARE message, the value specified as the
acmStreamPrepareHeader function's fdwPrepare argument. (Not used.)

• For the ACMDM_STREAM_UNPREPARE message, the value specified as the
acmStreamUnprepareHeader function's fdwUnprepare argument. (Not used.)

ACMDRVSTREAMHEADER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 218 Windows NT DDK

• For the ACMDM_STREAM_CONVERT message, the value specified as the
acmStreamConvert function's fdwConvert argument.

For ACMDM_STREAM_CONVERT, the following flags are defined.
Flags Meaning
ACM_STREAMCONVERTF_
BLOCKALIGN

Indicates that only whole blocks of source data should be
converted. The size of a block is obtained from the source
format's WAVEFORMATEX structure (see
ACMDRVSTREAMINSTANCE). If the flag is set, the driver
should not convert extra bytes that do not make up a whole
block. Generally, clients set this flag for all buffers in a
conversion stream except the last one.

ACM_STREAMCONVERTF_
START

Indicates that the driver should re-initialize stream instance
data, such as predictor coefficients or scale factors, to
default starting values. This flag can be specified with the
ACM_STREAMCONVERTF_END flag.

ACM_STREAMCONVERTF_
END

Indicates that the driver should return end-of-stream data,
such as tail end echo data for an echo filter, in the
destination buffer, along with data converted from the
source buffer. This flag can be specified with the
ACM_STREAMCONVERTF_START flag.

padshNext
Pointer to another ACMDRVSTREAMHEADER structure. An asynchronous driver can use this
member for creating a queue of pending conversion requests. The ACM clears the member
prior to sending an ACMDM_STREAM_PREPARE or ACMDM_STREAM_CONVERT message.

fdwDriver
Contains stream instance information supplied by the driver for its own use. This member is
intended for storing driver-defined flags, but you can use it for any purpose you wish. The ACM
clears this member prior to sending an ACMDM_STREAM_PREPARE message. Otherwise its
value is preserved from one message to the next.

dwDriver
Contains stream instance information supplied by the driver for its own use. You can use this
member for any purpose you wish. The ACM clears this member prior to sending an
ACMDM_STREAM_PREPARE message. Otherwise its value is preserved from one message
to the next.

fdwPrepared
Used by ACM only. Contains the fdwPrepared argument to the acmStreamPrepareHeader
function.

dwPrepared
Used by ACM only. Contains the has argument to the acmStreamPrepareHeader function.

pbPreparedSrc
Used by ACM only. Contains the address of source the buffer supplied with the
acmStreamPrepareHeader function.

cbPreparedSrcLength
Used by ACM only. Contains the length of the source buffer supplied with the
acmStreamPrepareHeader function.

pbPreparedDst
Used by ACM only. Contains the address of the destination buffer supplied with the
acmStreamPrepareHeader function.

cbPreparedDstLength
Used by ACM only. Contains the length of the destination buffer supplied with the
acmStreamPrepareHeader function.

ACMDRVSTREAMINSTANCE

ACMDRVSTREAMINSTANCE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 219 Windows NT DDK

typedef struct {
 DWORD cbStruct;
 LPWAVEFORMATEX pwfxSrc;
 LPWAVEFORMATEX pwfxDst;
 LPWAVEFILTER pwfltr;
 DWORD dwCallback;
 DWORD dwInstance;
 DWORD fdwOpen;
 DWORD fdwDriver;
 DWORD dwDriver;
 HACMSTREAM has;
} ACMDRVSTREAMINSTANCE;

The ACMDRVSTREAMINSTANCE structure describes an instance of a conversion stream.
ACMDRVSTREAMINSTANCE is defined in msacmdrv.h.

Members
cbStruct

Contains the size, in bytes, of the ACMDRVSTREAMINSTANCE structure.
pwfxSrc

Pointer to a WAVEFORMATEX structure that defines the source format for a conversion
stream. (WAVEFORMATEX is described in the Win32 SDK.)

pwfxDst
Pointer to a WAVEFORMATEX structure that defines the destination format for a conversion
stream.

pwfltr
Pointer to an optional WAVEFILTER structure that defines a filter to be used on a conversion
stream. This member is NULL if the application has not specified a filter. (WAVEFILTER is
described in the Win32 SDK.)

dwCallback
Contains the application-specified dwCallback argument to the acmStreamOpen function.

dwInstance
Contains the application-specified dwInstance argument to the acmStreamOpen function.

fdwOpen
Contains the application-specified dwOpen argument to the acmStreamOpen function, which
consists of a set of flags. (For flag descriptions, refer to acmStreamOpen in the Win32 SDK.)

fdwDriver
Contains driver-defined stream instance information. While intended for storing flag values, an
ACM driver can use this member to store any instance-specific DWORD value. Because the
same ACMDRVSTREAMINSTANCE structure is passed with all stream messages associated
with a particular stream instance, the stored value can be read or modified each time a stream
message is received, and the last saved value will be available the next time a stream
message is received.

dwDriver
Contains driver-defined stream instance information. An ACM driver can use this member for
storing any instance-specific DWORD value, such as a pointer to a local, dynamically allocated
structure. Because the same ACMDRVSTREAMINSTANCE structure is passed with all stream
messages associated with a particular stream instance, the stored value can be read or
modified each time a stream message is received, and the last saved value will be available
the next time a stream message is received.

has
Contains the ACM-defined client handle to the open conversion stream.

Comments
The ACM allocates an ACMDRVSTREAMINSTANCE structure each time an application calls

ACMDRVSTREAMINSTANCE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 220 Windows NT DDK

acmStreamOpen. This ACMDRVSTREAMINSTANCE structure is then passed to the driver with
all stream messages associated with a particular stream instance. Information in the structure
does not change, so if a driver validates information within the structure when it receives an
ACMDM_STREAM_OPEN message, it does not have to validate the information again when it
receives subsequent messages for the same stream instance.

ACMDRVSTREAMSIZE
typedef struct {
 DWORD cbStruct;
 DWORD fdwSize;
 DWORD cbSrcLength;
 DWORD cbDstLength;
} ACMDRVSTREAMSIZE;

The ACMDRVSTREAMSIZE structure contains information needed by an ACM driver to respond
to an ACMDM_STREAM_SIZE message. ACMDRVSTREAMSIZE is defined in msacmdrv.h.

Members
cbStruct

Size, in bytes, of the ACMDRVSTREAMSIZE structure.
fdwSize

Contains one of the following flags, indicating the query type.
Flag Meaning
ACM_STREAMSIZEF_
SOURCE

Indicates the client has specified the size, in bytes, of a
source buffer in the cbSrcLength member. The driver
should return the required destination buffer length in
cbDstLength.

ACM_STREAMSIZEF_
DESTINATION

Indicates the client has specified the size, in bytes, of a
destination buffer in the cbDstLength member. The driver
should return the required source buffer length in
cbSrcLength.

cbSrcLength
Size, in bytes, of the source buffer. The flag value specified in fdwSize indicates whether this
value is supplied by the client or by the driver.

cbDstLength
Size, in bytes, of the destination buffer. The flag value specified in fdwSize indicates whether
this value is supplied by the client or by the driver.

Video Capture Device Drivers
The following topics explain how to write video capture drivers for Windows NT:

• Introduction to Video Capture Drivers
• Designing a User-Mode Video Capture Driver
• Designing a Kernel-Mode Video Capture Driver
• Video Capture Driver Reference

For a general discussion of multimedia device drivers, refer to Introduction to Multimedia Drivers.

Introduction to Video Capture Drivers
The following topics provide an introduction to video capture drivers:

Introduction to Video Capture Drivers
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 221 Windows NT DDK

• Capabilities of Video Capture Drivers
• Video Capture Software Components
• Sample Video Capture Drivers

Capabilities of Video Capture Drivers
Video capture device drivers can capture video input images that device hardware has stored in a
frame buffer. They can pass these images to client applications as device-independent bitmaps
(DIBs). If the hardware allows, they can display captured images as an overlay on an output
display device.

APIs provided by the Microsoft Video for Windows Development Kit and the AVI capture (AVIcap)
window class allow applications to capture either single video images or streams of images, and
to view images on an overlay display as they are captured. The AVIcap window class is described
in the Win32 SDK.

The Video Compression Manager allows applications to play back previously recorded bitmap
images. For more information about the Video Compression Manager and its drivers, see Video
Compression Manager Drivers.

Video Capture Software Components
The following diagram illustrates the relationship of the major Windows NT video software
components.

Video Capture Software Components
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 222 Windows NT DDK

Windows NT Executive

VCKernel.lib

Kernel-mode
video capture driver

VCUser.lib

User-mode
video capture

driver

User-mode
video capture

driver

User-mode
video capture

driver

VCM
driver

VCM
driver

winmm.dll

Application

AVIcap VCM

avicap32.dllmsvfw32.dll

User Mode
Kernel Mode

Kernel-mode
video capture driver

Kernel-mode
video capture driver

hardwarehardwarehardware

The components in the diagram include:

Application
Any user-mode, Win32-based application that creates an AVIcap window (described in the
Win32 SDK), calls the video API functions (described in the Video for Windows Development
Kit), or calls the Video Compression Manager functions (also described in the Win32 SDK).

msvfw32.dll
Microsoft Video for Windows dynamic-link library. Exports the video API functions described in
the Video for Windows Development Kit. Also exports the MCIWnd window class and
DRAWDIB functions, described in the Win32 SDK. Additionally, this library includes the Video
Compression Manager. For more information about the Video Compression Manager, see
Video Compression Manager Drivers.

avicap32.dll
Dynamic-link library supporting the AVI capture window class.

winmm.dll
Dynamic-link library that exports SendDriverMessage, which calls a user-mode driver's
DriverProc function. See winmm.dll.

Video Capture Software Components
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 223 Windows NT DDK

User-mode video capture drivers
Dynamic-link libraries that communicate with kernel-mode drivers.

VCM drivers
Dynamic-link libraries that compress or decompress video data and either return it to the caller
or send it to a kernel-mode driver.

VCUser.lib
Library used as a basis for user-mode video capture drivers. For details, see Using VCUser.lib.

VCKernel.lib
Library used as a basis for kernel-mode video capture drivers. For details, see Using
VCKernel.lib.

Kernel-mode video capture drivers
Kernel-mode code that communicates with the Windows NT Executive in order to access
device hardware.

Sample Video Capture Drivers
The Windows NT DDK includes the source code for the following video capture drivers and
dynamic-link libraries:

Drivers or Libraries Location of Source Files
Truevision Bravado video capture drivers \ddk\src\mmedia\vidcap\bravado
Video Spigot video capture drivers \ddk\src\mmedia\vidcap\spigot
Microsoft YUV compressor/decompressor \ddk\src\mmedia\vidcap\msyuv
User-mode video capture driver library (For
details, see Using VCUser.lib.)

\ddk\src\mmedia\vidcap\vcuser

Kernel-mode video capture driver library (For
details, see Using VCKernel.lib.)

\ddk\src\mmedia\vidcap\vckernel

For the Bravado and Spigot driver samples, code for both the user-mode and the kernel-mode
driver is provided. Under the listed driver directory, a \dll subdirectory contains the user-mode
driver sources, and a \driver subdirectory contains the kernel-mode driver sources.

The Truevision Bravado video capture drivers (bravado.dll and bravado.sys) and hardware
support image capture, scaling, and overlay. They do not support clipping. The hardware accepts
compressed YUV-formatted data for output.

The Video Spigot video capture drivers (spigot.dll and spigot.sys) and hardware support image
capture and scaling. They do not support overlay or clipping.

The Microsoft YUV compressor/decompressor (codec) is a user-mode driver (msyuv.dll) that can
draw compressed YUV-formatted video data by sending it to bravado.sys, the kernel-mode driver
for the Truevision Bravado hardware. For more information about video codecs, see Video
Compression Manager Drivers.

All of the sample user-mode drivers, including the YUV codec (msyuv.dll), are built by using
VCUser.lib.

All of the sample kernel-mode drivers are built by using VCKernel.lib.

Designing a User-Mode Video Capture Driver
User-mode video capture drivers are implemented as dynamic-link libraries. This section contains
the following topics to assist you in designing a user-mode video capture driver:

• DriverProc in User-Mode Video Capture Drivers
• User-Mode Video Capture Driver Messages
• Introduction to Video Channels

Designing a User-Mode Video Capture Driver
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 224 Windows NT DDK

• Opening Video Channels
• Configuring Video Channels
• Setting the Video Data Format
• Setting Source and Destination Rectangles
• Setting Palettes
• Transferring Video Capture Data

• Notifying Clients from Video Capture Drivers
• Using VCUser.lib

DriverProc in User-Mode Video Capture Drivers
Like all other Win32-based user-mode drivers, user-mode video capture drivers must export a
DriverProc entry point that recognizes the standard driver messages. Video capture driver
clients, such as msvfw32.dll and avicap32.dll, send messages to video capture drivers by calling
SendDriverMessage, which is exported by winmm.dll and described in the Win32 SDK.

When a user-mode video capture driver receives a DRV_OPEN message from avicap32.dll or
msvfw32.dll, it also receives a pointer to a VIDEO_OPEN_PARMS structure. For more
information about the use of this structure, see Opening Video Channels.

In addition to supporting the standard messages, the DriverProc entry point for user-mode video
capture drivers must support a set of user-mode video capture driver messages.

User-Mode Video Capture Driver Messages
The following table lists the messages that the DriverProc function in a user-mode video capture
driver can receive, along with the operation the driver performs when it receives each message.
Message definitions are contained in msviddrv.h and msvideo.h.

Message Operation Performed by Driver
DVM_CONFIGURESTORAGE Saves or restores configuration

information.
DVM_DIALOG Displays a dialog box to obtain

configuration information.
DVM_DST_RECT Sets or retrieves destination rectangle

parameters.
DVM_FORMAT Sets or retrieves video-capture format

parameters.
DVM_FRAME Transfers data from the frame buffer.
DVM_GET_CHANNEL_CAPS Returns channel capabilities.
DVM_GETERRORTEXT Returns the text string associated with an

error number.
DVM_GETVIDEOAPIVER Returns the video API version used by

the driver.
DVM_PALETTE Sets or retrieves a logical palette.
DVM_PALETTERGB555 Sets a logical palette and an RGB555

translation table.
DVM_SRC_RECT Sets or retrieves source rectangle

parameters.
DVM_STREAM_ADDBUFFER Adds a data buffer to a capture stream.
DVM_STREAM_FINI Terminates a capture stream.
DVM_STREAM_GETERROR Returns a stream's error status.
DVM_STREAM_GETPOSITION Returns the current position within a

User-Mode Video Capture Driver Messages
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 225 Windows NT DDK

capture stream.
DVM_STREAM_INIT Initializes a capture stream.
DVM_STREAM_PREPAREHEADER Prepares a data buffer.
DVM_STREAM_RESET Stops and resets a capture stream.
DVM_STREAM_START Starts a capture stream.
DVM_STREAM_STOP Stops a capture stream.
DVM_STREAM_UNPREPAREHEADER Removes preparation from a data buffer.
DVM_UPDATE Updates a screen overlay area.

Introduction to Video Channels
Video capture device drivers define the four logical video channels shown in the following table.
Each channel represents a portion of the data path between video hardware and system memory.

Channel Constant Definition
External In VIDEO_EXTERNALIN Data path from an external video

source, such as a TV, VCR, or
camera, into a frame buffer.

Video In VIDEO_IN Data path from the frame buffer to
system memory.

Video Out VIDEO_OUT Data path from system memory to the
frame buffer.

External Out VIDEO_EXTERNALOUT Data path from the frame buffer to an
output display, such as an overlay
window on a user's screen.

User-mode video capture drivers implement the concept of logical video channels, and clients
can open the channels they need to create a complete input and/or output data path. Logical
channels do not exist within kernel-mode drivers.

The sample video capture drivers provided with the Windows NT DDK support the
VIDEO_EXTERNALIN, VIDEO_IN, and VIDEO_EXTERNALOUT channels. Support for these
channels means that users employing the AVIcap window class or the Video For Windows API
can capture video images from an external source, store the images in memory or a file, and view
the captured images as they are received. The sample user-mode video capture drivers do not
support the VIDEO_OUT channel, so users cannot use them to play back recorded images.
Instead, user applications call the Video Compression Manager's API to send drawing requests to
Video Compression Manager drivers.

For more information about video channels, see Opening Video Channels and Configuring Video
Channels.

Opening Video Channels
A client must independently open each video channel that it intends to use. Therefore, a
user-mode video capture driver receives a separate DRV_OPEN message for each channel.
When a driver receives a DRV_OPEN message, it must check the dwFlags member of the
accompanying VIDEO_OPEN_PARMS structure to determine which video channel to open. The
member's value can be one of the following constants, which are defined in msvideo.h:

• VIDEO_EXTERNALIN
• VIDEO_IN
• VIDEO_OUT
• VIDEO_EXTERNALOUT

Besides testing for these constants, the driver must also return the detected constant as the return

Opening Video Channels
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 226 Windows NT DDK

value for DriverProc, as illustrated in the vidOpen function within each sample user-mode driver.
This constant then becomes the value passed to the driver as the dwDriverID parameter, when a
client makes subsequent calls to DriverProc to send the driver user-mode video capture driver
messages.

Configuring Video Channels
User-mode video capture drivers can allow users to specify configuration parameters for each
video channel. After a client opens a channel, it can send a DVM_DIALOG message for the
opened channel. In response to the message, the driver displays a dialog box that allows the user
to specify parameters for the channel type. Typically, the driver provides a different dialog box for
each channel type. If the driver does not support a channel type, or the driver does not allow user
modification to the channel's parameters, it can return the DV_ERR_NOTSUPPORTED error
code.

The sample video capture driver, bravado.dll, uses dialog boxes to obtain the following channel
configuration information.

Channel Information Obtained
VIDEO_EXTERNALIN Hue, video source standard, connector number, cable

format.
VIDEO_IN Data format, destination image size. (Also see Setting the

Video Data Format.)
VIDEO_OUT Not supported.
VIDEO_EXTERNALOUT Saturation, brightness, contrast, red, green, blue.

User-mode drivers should store channel configuration parameters for each user by writing them
into the registry, under the path HKEY_CURRENT_USER \Software \Microsoft \Multimedia
\Video Capture \DriverName, where DriverName represents the name of your driver. For more
information about obtaining and storing channel configuration parameters, see Configuring Video
Channels, Using VCUser.lib.

The driver should provide default values for all channel configuration parameters, and it should
use the default values if it has not stored values for the current user in the previously listed
registry path.

Changing the format can alter the dimensions of the active portion of the frame buffer, and can
also affect bit depth and color space representation. Additionally, changing between NTSC and
PAL video standards can affect image dimensions. Therefore, clients typically send a
DVM_FORMAT message to request the current format after they have sent a DVM_DIALOG
message for the VIDEO_EXTERNALIN channel.

Clients can also request a driver to store a channel's configuration parameters in a file, or to
restore the parameters from a previously created file, by sending a
DVM_CONFIGURESTORAGE message.

Setting the Video Data Format
Developers of video capture clients expect video capture data to be stored as device independent
bitmaps (DIBs). DIB contents are described by BITMAPINFO and BITMAPINFOHEADER
structures, which are discussed in the Win32 SDK. A client can specify a data format, or query the
driver for the current format, by sending the driver a DVM_FORMAT message and including the
address of a BITMAPINFOHEADER structure.

You can also allow users to modify the format. Typically, you include format options in the dialog
boxes associated with VIDEO_IN and VIDEO_OUT channels, and your driver displays these
dialog boxes when it receives DVM_DIALOG messages. For more information, see Configuring
Video Channels.

The sample video capture drivers do not support DVM_FORMAT for the VIDEO_OUT channel,

Setting the Video Data Format
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 227 Windows NT DDK

because the VIDEO_OUT channel is handled by Video Compression Manager drivers.

Your driver should provide default values for all format variables. These default values should
represent a format that can be handled most efficiently by the video capture hardware. The driver
should use the default values if client-specified (via DVM_FORMAT) or user-specified (via
DVM_DIALOG) values are not available.

Following is a typical scenario in which a client modifies the format because of limited system
storage space:

1. Prior to opening an input stream, a client sends a DVM_FORMAT message, with the
VIDEO_CONFIGURE_GET flag set, to determine the current format.

2. The client calculates the amount of storage needed to store a captured video stream if the
current format is used.

3. The client attempts to allocate enough storage to save the stream. The allocation fails because
there is not enough storage space available.

4. The client sends a DVM_FORMAT message to change the format to one that requires less
storage space.

5. The client again attempts to allocate enough storage to save the stream. This time the
allocation succeeds.

6. The client opens the stream and saves the input data. (For details, see Transferring Video
Capture Data.)

Setting Source and Destination Rectangles
Video capture drivers can support the use of source and destination rectangles. A rectangle's
typical use is dependent on the channel for which it is defined, as illustrated by the following table.

Channel Source Rectangle Destination Rectangle
VIDEO_EXTERNALIN Specifies the portion of

the analog image to be
digitized.

Specifies the portion of the
frame buffer to receive
digitized input data.

VIDEO_IN Specifies the portion of
the frame buffer to be
copied to the client.

Not applicable.

VIDEO_OUT Not applicable. Specifies the portion of the
frame buffer to copy client
data into.

VIDEO_EXTERNALOUT Specifies the portion of
the frame buffer to
display inside the
overlay area.

Specifies the portion of the
display device to use as the
overlay area.

A driver does not have to support all rectangles for all channels. Two messages,
DVM_SRC_RECT and DVM_DST_RECT, are provided to allow clients to set and query the size
of rectangles. Drivers that define rectangles on some or all channels must support these two
messages. Even if your driver does not allow client modification of rectangle sizes, it should allow
the client to send these messages to determine a rectangle's predefined size. Rectangles are
always specified using screen coordinates, which are described in the Win32 SDK.

After a client changes a VIDEO_EXTERNALOUT rectangle's coordinates, it typically sends a
DVM_UPDATE message to request the driver to update the display.

Clients send the DVM_GET_CHANNEL_CAPS message to determine the rectangular capabilities
that a driver provides for a particular channel. In response to this message, your driver indicates
its overlay, clipping, and scaling capabilities, along with allowable re-sizing parameters.

Setting Palettes

Setting Palettes
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 228 Windows NT DDK

Video capture drivers can allow clients to specify a logical color palette and, optionally, an
RGB555-format translation table. Two messages, DVM_PALETTE and DVM_PALETTERGB555,
are defined.

The DVM_PALETTE message allows a client to specify a logical palette or to obtain the current
palette from the driver. When a client specifies a logical palette, the driver typically creates a
translation table by using the CreatePalette and GetNearestPaletteIndex functions described in
the Win32 SDK, as illustrated in the sample video capture drivers. By sending a
DVM_PALETTERGB555 message, a client can specify both a palette and an RGB555 translation
table.

Drivers use the translation tables when converting frame buffer data into DIBs. (The palette
location corresponding to an RGB color is found by using an RRRRRGGGGGBBBBB binary
value as an index into the translation table, where the five most significant bits of each color
component are used to create the index).

Drivers typically create a default palette when processing the DRV_OPEN message.

For more information about color palettes, see the Win32 SDK.

Transferring Video Capture Data
The APIs provided for capturing video images enable clients to receive single captured frames
and to receive streams of frames that are captured at a client-specified rate. The next section
discusses transferring single frames, and the following section explains the algorithm for
transferring streams of captured data.

Transferring Single Frames
Application developers sometimes need to transfer single frames of video information. For
instance, a developer might want to record animated sequences that are generated one frame at
a time, or to display a single image, such as a photograph.

Clients can transfer single frames of video information by sending the DVM_FRAME message,
along with the address of a VIDEOHDR structure. Clients specify the VIDEO_IN channel to obtain
a frame from the device's frame buffer, or the VIDEO_OUT channel to send a frame to the frame
buffer.

If the channel is VIDEO_IN, the client includes the address of an empty data buffer. By calling the
kernel-mode driver, the user-mode driver transfers the contents of the device's frame buffer into
the data buffer. If the channel is VIDEO_OUT, the client includes the address of a filled data
buffer. The user-mode driver sends the data buffer's contents to the kernel-mode driver, which in
turn transfers the contents to the device's frame buffer. The sample video capture drivers support
single frame transfers only on the VIDEO_IN channel.

When handling single-frame transfers, drivers must take into account current settings for video
format, source or destination rectangles, and color palettes.

Transferring Streams of Captured Data
Video capture drivers must provide the capability of handling video capture input streams. Video
capture drivers do not support output streams. Output streams are handled by Video Compression
Manager drivers.

To transfer a stream of captured video input data, a client must:

1. Establish settings for video format, source or destination rectangles, and color palettes.
2. Initialize the appropriate video channels.
3. Allocate data buffers, prepare them for use, and pass them to the driver to be filled.
4. Request the driver to start filling and returning the data buffers.
5. Copy data from the buffers and pass them back to the driver for re-use.

Transferring Streams of Captured Data
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 229 Windows NT DDK

6. Request the driver to end the transfer operation.

The first streaming message a user-mode video capture driver should receive a is
DVM_STREAM_INIT, along with a channel specification. The following table lists the operations
that a driver should perform, based on the specified channel.

Channel Operation to Perform for DMV_STREAM_INIT
Message

VIDEO_EXTERNALIN Set up hardware to allow capture operations.
VIDEO_IN Save client-specified capture rate and event

notification information.
VIDEO_OUT Not used.
VIDEO_EXTERNALOUT Set up hardware to allow overlay operations.

Clients dynamically allocate buffers to receive captured data. Before a client can use a data
buffer in a streaming operation, it must pass the buffer's address to the user-mode driver by
calling DVM_STREAM_PREPAREHEADER, so the driver can prepare the buffer for use. The
client then sends a DVM_STREAM_ADDBUFFER message for each prepared buffer, which
requests the driver to add the buffer's address to a queue of buffers waiting to be filled.

To start the input operation, the clients sends a DVM_STREAM_START message. The
user-mode driver passes the request to the kernel-mode driver, which causes input operations to
begin, typically by enabling device interrupts so that an interrupt occurs each time the frame
buffer has been filled. Each time the frame buffer is filled, its contents are copied into the next
available client buffer. The user-mode driver then sends the client an MM_DRVM_DATA callback
message. The client copies the data from the buffer and re-adds the buffer to the user-mode
driver's buffer queue by sending another DVM_STREAM_ADDBUFFER message. The client can
send a DVM_STREAM_GETERROR message to determine if the driver has dropped any
captured frames because of a lack of available buffers.

When the client is ready to stop the input stream, it sends a DVM_STREAM_STOP message. It
can also send DVM_STREAM_RESET, which indicates to the user-mode driver that it should not
fill any remaining data buffers. The client can then send a
DVM_STREAM_UNPREPAREHEADER message for each buffer and de-allocate the buffers.
Finally, the client sends a DVM_STREAM_FINI message to close the streaming session.

For all stream messages except DVM_STREAM_INIT and DVM_STREAM_FINI, the
client-specified channel should always be VIDEO_IN.

Notifying Clients from Video Capture Drivers
User-mode video capture drivers are responsible for notifying clients upon the completion of
certain driver events. When a client sends a DVM_STREAM_INIT message, it indicates the type
of notification, if any, it expects to receive. A client can specify any of the following notification
targets:

• A callback function
• A window handle

User-mode drivers notify clients by calling the DriverCallback function in winmm.dll. This function
delivers a message to the client's notification target. The function also delivers message
parameters, if the target type accepts parameters.

Video capture drivers must send MM_DRVM_OPEN, MM_DRVM_CLOSE, MM_DRVM_DATA,
and MM_DRVM_ERROR messages to clients.

If you are using VCUser.lib to develop your driver, you do not have to call DriverCallback to send
callback messages. Code within VCUser.lib handles delivery of callback messages for you, if you
call VC_StreamInit when processing the DVM_STREAM_INIT message.

Using VCUser.lib
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 230 Windows NT DDK

Using VCUser.lib
This section contains the following topics that explain how to use the user-mode video capture
library, VCUser.lib:

• Introduction to VCUser.lib
• Installing and Configuring a Kernel-Mode Driver, Using VCUser.lib
• Opening and Closing a Device, Using VCUser.lib
• Configuring Video Channels, Using VCUser.lib
• Supporting Overlay Capabilities, Using VCUser.lib
• Capturing Video Data, Using VCUser.lib
• Playing Back Captured Video Data, Using VCUser.lib

• Notifying Clients, Using VCUser.lib

Introduction to VCUser.lib
The VCUser.lib library exports a set of functions that provide a convenient interface between a
user-mode video capture driver and its kernel-mode counterpart. If you link your user-mode driver
with VCUser.lib, your driver can easily communicate with a kernel-mode driver that is using
VCKernel.lib, the companion library for kernel-mode video capture drivers.

The VCUser.lib library is typically used by:

• User-mode video capture drivers that support the user-mode video capture driver messages.
• User-mode video codecs that support output operations by making use of decompressing

hardware. An example driver is the sample msyuv.dll driver provided with the Windows NT
DDK. For more information about video codecs, see Video Compression Manager Drivers.

Typically, VCUser.lib library functions communicate with a kernel-mode driver by calling the
DeviceIoControl function, described in the Win32 SDK, to send I/O control codes to the driver.
Your driver typically calls VCUser.lib functions in response to the receipt of standard driver
messages or user-mode video capture driver messages.

To use VCUser.lib with your user-mode driver
1. Include vcuser.h and vcstruct.h in your driver.
2. Link your driver with VCUser.lib.

Installing and Configuring a Kernel-Mode Driver, Using VCUser.lib
User-mode drivers are responsible for installing their associated kernel-mode drivers and for
providing kernel-mode drivers with configuration parameter values. The first VCUser.lib function
that a user-mode driver should call is VC_OpenProfileAccess. This function, which specifies the
kernel-mode driver's name and sets up storage for access to the Service Control Manager and
the registry, should be called when the driver receives a DRV_LOAD message.

Next, the driver should call VC_ConfigAccess. If the client has Administrators privilege and is
thus allowed to install drivers, this function establishes a connection to the Service Control
Manager. The driver should call the function when it receives a DRV_QUERYCONFIGURE
message.

When the driver receives a DRV_CONFIGURE message, it should call VC_InstallDriver to install
the kernel-mode driver. This function allows you to specify a callback function, from which your
driver can make calls to VC_WriteProfile to store driver configuration parameters in the registry.
If your kernel-mode driver encounters installation errors, it should write an error code into the
registry. Your user-mode driver can call VC_ReadProfile to check the error code or to obtain the
stored configuration information.

Upon receipt of a DRV_REMOVE message, your driver should call VC_RemoveDriver to remove

Installing and Configuring a Kernel-Mode Driver, Using VCUser.lib
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 231 Windows NT DDK

the kernel-mode driver's installation. The last message your driver can receive is DRV_FREE, at
which time it should call VC_CloseProfileAccess to remove its connection to the Service Control
Manager.

Opening and Closing a Device, Using VCUser.lib
When your user-mode driver receives a DRV_OPEN message it should call VC_OpenDevice to
open a device. The following two restrictions apply to opening a video capture device:

1. A user-mode video capture driver can only allow one instance of a device to be open at time.
2. A kernel-mode video capture driver can only support one hardware device.

There are two ways to specify a device when calling VC_OpenDevice  by device name or by
index number. Because a kernel-mode driver can only support one hardware device, you specify
a device's name by specifying the kernel-mode driver's name, such as "bravado", without
appending a device number.

Video capture device objects are assigned names of vidcap0, vidcap1, vidcap2, and so on. By
specifying an index number instead of a device name, you can open any video capture device
without knowing its name. For example, specifying an index of "1" opens the device "vidcap1".
The sample video capture driver msyuv.dll uses this index number in order to search for a device
that supports a specific data format. For more information about device objects, see the
Kernel-Mode Drivers Design Guide.

Your driver receives a DRV_OPEN message for each video channel (VIDEO_EXTERNALIN,
VIDEO_IN, VIDEO_OUT, VIDEO_EXTERNALOUT) that the client will be using, but
VC_OpenDevice should only be called once.

If your hardware provides overlay capabilities, then prior to calling VC_OpenDevice your driver
must determine characteristics of the user's display device, such as the display's horizontal and
vertical resolutions, and bits per pixel. The kernel-mode driver needs this information when
constructing and positioning an overlay image. The user-mode driver can obtain characteristics of
the user's display device by calling GetDeviceCaps, which is described in the Win32 SDK. Your
user-mode driver should call VC_WriteProfile to store the characteristics in the registry, where
your kernel-mode driver can access them when needed.

Upon receipt of a DRV_CLOSE message, your driver should call VC_CloseDevice. Your driver
will receive a DRV_CLOSE message for each open video channel, but VC_CloseDevice should
only be called once.

Configuring Video Channels, Using VCUser.lib
Video channel configuration parameters should be stored in the registry, individually for each
user. To store and retrieve a user's channel configuration parameters, a user-mode driver can call
VC_WriteProfileUser and VC_ReadProfileUser. The driver generally obtains channel
configuration parameters, and stores them in the registry, when it receives DVM_DIALOG
messages.

The VCUser.lib library provides three functions for passing channel configuration parameters to
the kernel-mode driver. The VC_ConfigDisplay function is used for passing parameters
associated with the output display. The VC_ConfigFormat function is used for passing data
format parameters. The VC_ConfigSource function is used for passing parameters associated
with the input source. For more information about channel configuration parameters, see
Configuring Video Channels.

Supporting Overlay Capabilities, Using VCUser.lib
To determine the hardware's overlay capabilities, a user-mode driver can call
VC_GetOverlayMode. This function indicates whether or not overlay capabilities are provided,
and also indicates the type of support provided for color keying and rectangle specifications.
Based on the returned information, the driver can call VC_SetKeyColourPalIdx,
VC_SetKeyColourRGB, or VC_GetKeyColour to set or retrieve the overlay's key color. The

Supporting Overlay Capabilities, Using VCUser.lib
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 232 Windows NT DDK

driver should call VC_SetOverlayRect to specify the area to be overlaid and
VC_SetOverlayOffset to specify which portion of the frame buffer to display in the overlay area.
To enable the hardware's overlay capabilities, the driver calls VC_Overlay.

Capturing Video Data, Using VCUser.lib
To enable the hardware's video capture capability, your driver should call VC_Capture. To obtain
a single frame of capture data, your driver can call VC_Frame.

To continuously obtain captured data as a stream, VCUser.lib provides a set of input stream
functions, which your driver can call when it receives user-mode video capture driver messages
that specify stream operations. The input stream functions are:

VC_StreamInit
Initializes VCUser.lib's capture streaming capabilities.

VC_StreamAddBuffer
Adds empty buffers to a buffer queue.

VC_StreamStart
Starts capturing frames and copying them into queued buffers, and notifying the client each
time a buffer is filled.

VC_GetStreamPos
Returns the amount of time that has passed since the stream started.

VC_GetStreamError
Returns the number of times a frame was dropped because a buffer was not available.

VC_StreamStop
Stops capturing frames.

VC_StreamReset
Returns unused buffers to the client.

VC_StreamFini
Disables VCUser.lib's capture streaming capabilities.

For more information about capturing data, see Transferring Video Capture Data.

Playing Back Captured Video Data, Using VCUser.lib
The VCUser.lib library provides a single function, VC_DrawFrame, for playing back capture data.
If the VC_GetOverlayMode function indicates that the hardware provides overlay capabilities and
supports the desired data format, a driver can call VC_DrawFrame to send a bitmap to the
hardware's frame buffer for display in the overlay area.

Notifying Clients, Using VCUser.lib
User-mode drivers using VCUser.lib do not need to send callback messages to clients. When the
driver calls VC_StreamInit, client-specified callback information is passed to VCUser.lib so that it
can send callback messages at appropriate times.

For more information about callback messages, see Notifying Clients From Video Capture Drivers.

Designing a Kernel-Mode Video Capture Driver
Kernel-mode video capture drivers are responsible for accessing video capture hardware. They
are implemented as services under the control of the Windows NT Service Control Manager. This
section provides topics that explain implementing DriverEntry in a video capture driver and using
VCKernel.lib.

DriverEntry in a Video Capture Driver
Like all kernel-mode multimedia drivers, kernel-mode video capture drivers must provide a

DriverEntry in a Video Capture Driver
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 233 Windows NT DDK

DriverEntry function for handling initialization and configuration operations. This DriverEntry for
multimedia drivers is the first function called after a kernel-mode driver is loaded.

For more information about the contents of a video capture driver's DriverEntry function, see
Initializing and Configuring a Driver, Using VCKernel.lib. The DriverEntry function for the sample
video capture driver, bravado.sys, is located in \src\mmedia\vidcap\bravado\driver\init.c.

Using VCKernel.lib
This section contains the following topics that explain how to use the kernel-mode video capture
library, VCKernel.lib:

• Introduction to VCKernel.lib
• Initializing and Configuring a Driver, Using VCKernel.lib
• Opening and Closing a Device, Using VCKernel.lib
• Configuring Video Channels, Using VCKernel.lib
• Accessing Video Capture Hardware, Using VCKernel.lib
• Handling Interrupts, Using VCKernel.lib
• Synchronizing Driver Activities, Using VCKernel.lib

• Supporting Overlay Capabilities, Using VCKernel.lib
• Capturing Video Data, Using VCKernel.lib
• Playing Back Captured Video Data, Using VCKernel.lib

Introduction to VCKernel.lib
The VCKernel.lib library exports a set of functions that provide a convenient interface between a
kernel-mode video capture driver and its user-mode counterpart. If you link your kernel-mode
driver with VCKernel.lib, your driver can easily respond to I/O request packets (IRPs) sent to it by
a user-mode driver that is using VCUser.lib, the companion library for user-mode video capture
drivers. (For more information about IRPs, see the Kernel-Mode Drivers Design Guide.)

The VCKernel.lib library provides a dispatch function that recognizes the I/O request codes and
control codes that a user-mode driver can place inside the IRPs. The driver provides a set of
driver functions used with VCKernel.lib, which the library calls in response to the receipt of the
control codes.

To use VCKernel.lib with your kernel-mode driver
1. Include vckernel.h and vcstruct.h in your driver.
2. Link your driver with VCKernel.lib.

Initializing and Configuring a Driver, Using VCKernel.lib
Initialization and configuration operations take place in a kernel-mode driver's DriverEntry
function. Video capture drivers using VCKernel.lib, such as bravado.sys, must call VC_Init from
within DriverEntry, before calling any other VCKernel.lib function. The VC_Init function creates a
device object named "vidcapx", where x is incremented from 0 for each new video capture device
object, and creates an entry for the device in the registry.

After calling VC_Init, bravado.sys calls VC_ReadProfile to obtain hardware configuration
parameters that were stored by the user-mode driver. These parameters are used as input to
VC_GetResources, which reserves system resources for the device, and maps the device's I/O
address space and frame buffer into system address space.

Kernel-mode drivers using VCKernel.lib must provide a set of driver functions used with
VCKernel.lib, so bravado.sys next calls VC_GetCallbackTable to get the address of
VCKernel.lib's callback table, and fills in the table with the addresses of driver-supplied functions.

After the callback table has been filled, device hardware can be initialized. The bravado.sys driver

Initializing and Configuring a Driver, Using VCKernel.lib
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 234 Windows NT DDK

places initial values in device registers and then calls VC_ConnectInterrupt to connect the
driver's interrupt service routine with the device's interrupt number. Then it confirms that
interrupts can be received.

If bravado.sys detects an error during execution of its DriverEntry function, it calls
VC_WriteProfile to write an error code into the registry. The user-mode driver can read the
registry entry to determine if the kernel-mode driver initialized properly.

Before a kernel-mode driver is unloaded, VCKernel.lib calls VC_Cleanup, which in turn calls the
driver-supplied CleanupFunc function. The VC_Cleanup function releases resources allocated
by VC_Init and VC_GetResources. The driver's CleanupFunc function might disable hardware
and free any driver memory allocations. Besides being called by VCKernel.lib before the driver is
unloaded, VC_Cleanup is typically called by the driver itself if the driver detects an error within
DriverEntry any time after calling VC_Init.

Opening and Closing a Device, Using VCKernel.lib
Kernel-mode video capture drivers can provide functions for opening and closing devices. If the
driver includes a DeviceOpenFunc function, then VCKernel.lib calls the function when a device is
being opened. The function might enable hardware or allocate memory needed for I/O operations.
The sample driver, bravado.sys, uses its DeviceOpenFunc function to obtain characteristics of
the user's display device, which are placed in the registry by the user-mode driver (for details, see
Opening and Closing a Device, Using VCUser.lib).

If the driver includes a DeviceCloseFunc function, VCKernel.lib calls the function when the
device is being closed.

Configuring Video Channels, Using VCKernel.lib
Kernel-mode video capture drivers can provide three functions for setting device characteristics
that are based on the channel configuration options defined by the user-mode driver. These
functions are:

ConfigDisplayFunc
Sets characteristics of the overlay display.

ConfigFormatFunc
Sets video data format characteristics.

ConfigSourceFunc
Sets characteristics of the video source.

Code in VCKernel.lib calls these functions in response to requests from the user-mode driver,
which are explained in Configuring Video Channels, Using VCUser.lib.

Whenever video data format characteristics are changed, the kernel-mode driver should call
VC_SetImageSize to indicate the maximum number of bytes needed to store an image, using the
current format.

Accessing Video Capture Hardware, Using VCKernel.lib
After a kernel-mode video capture driver's DriverEntry function has called VC_GetResources,
which maps the device's I/O address space and frame buffer into system address space, the
driver can use VCKernel.lib functions and macros to access device hardware. The following
functions read or write the device's port address space:

VC_In
VC_Out

The following macros are useful for reading or writing the device's frame buffer:

VC_ReadIOMemoryBlock
VC_ReadIOMemoryBYTE

Accessing Video Capture Hardware, Using VCKernel.lib
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 235 Windows NT DDK

VC_ReadIOMemoryULONG
VC_ReadIOMemoryUSHORT
VC_WriteIOMemoryBlock
VC_WriteIOMemoryBYTE
VC_WriteIOMemoryULONG
VC_WriteIOMemoryUSHORT

Handling Interrupts, Using VCKernel.lib
All kernel-mode video capture drivers using VCKernel.lib must provide both an interrupt service
routine (ISR) and a deferred procedure call (DPC) function. The ISR is referred to as the driver's
InterruptAcknowledge function, and the DPC function is referred to as its CaptureService
function.

Synchronizing Driver Activities, Using VCKernel.lib
Code that references the same objects that a driver's interrupt service routine (ISR) references 
typically structures and device registers  must be synchronized to avoid simultaneous attempts
at referencing the same object. Likewise, code that references the same objects that the driver's
deferred procedure call (DPC) function references  typically the frame buffer  must be
synchronized.

Kernel-mode drivers normally run at an IRQL of PASSIVE_LEVEL. When a device interrupt
occurs, the IRQL increases to the device's IRQL while the ISR executes. The ISR acknowledges
the interrupt and schedules the execution of a DPC function. The DPC function finishes servicing
the interrupt, typically by copying frame buffer data. It executes at an IRQL of
DISPATCH_LEVEL, which is between PASSIVE_LEVEL and the device's level.

Video capture drivers using VCKernel.lib should use the VC_SynchronizeExecution function to
synchronize references to objects that the device's ISR uses. The function uses a spin lock and
the device's IRQL to maintain exclusive use of the referenced object.

Drivers should use the VC_SynchronizeDPC function to synchronize references to objects that
the device's DPC function uses. The VC_SynchronizeDPC function uses a spin lock and the
DISPATCH_LEVEL IRQL to maintain exclusive use of the referenced object.

Use of VC_SynchronizeExecution and VC_SynchronizeDPC ensures that multiple processors
cannot simultaneously reference the same object, and that lower-priority code executing on the
current processor cannot obtain access to the object.

For more information about spin locks, and IRQLs, see the Kernel-Mode Drivers Design Guide.

Supporting Overlay Capabilities, Using VCKernel.lib
Kernel-mode video capture drivers support a device's overlay capabilities by providing a set of
functions that VCKernel.lib can call in response to requests from a user-mode driver. If the
hardware supports overlay capabilities, the driver must provide the following set of functions:

OverlayFunc
Enables overlay.

GetOverlayModeFunc
Returns overlay capabilities.

SetOverlayRectsFunc
Sets overlay display rectangles.

SetOverlayOffsetFunc
Sets the overlay offset rectangle that is used for panning.

GetKeyColourFunc
Returns the overlay area's current key color.

SetKeyPalIdxFunc

Supporting Overlay Capabilities, Using VCKernel.lib
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 236 Windows NT DDK

Sets the overlay area's key color to a palette index number.
SetKeyRGBFunc

Sets the overlay area's key color to an RGB value.

Capturing Video Data, Using VCKernel.lib
From a kernel-mode video capture driver's viewpoint, all captured data is presented to the
user-mode driver as a stream. If the user-mode driver requests only a single frame, it opens a
stream and provides only a single buffer to receive frame contents. To support video capture
streams, your driver must provide the following functions, which VCKernel.lib calls in response to
requests from a user-mode driver:

StreamInitFunc
Initializes a stream.

StreamStartFunc
Starts recording frames.

StreamGetPositionFunc
Returns the time since recording started.

StreamStopFunc
Stops recording frames.

StreamFiniFunc
Closes the stream.

Code in VCKernel.lib maintains a queue of buffers received from the user-mode driver, passes
the address of the next available buffer to the driver's CaptureService function each time it is
called, and returns unused buffers to the user-mode driver when the user-mode driver resets the
stream. (For more information about capture streams and user-mode drivers see Capturing Video
Data, Using VCUser.lib.)

Your driver must also provide a CaptureFunc function, which enables and disables the
hardware's ability to capture frames.

Playing Back Captured Video Data, Using VCKernel.lib
If a device supports video playback, its kernel-mode video capture driver must provide a
DrawFrameFunc function, which VCKernel.lib can call in response to a request from a user-mode
driver. This function copies bitmap data in the device's frame buffer, while performing data
conversion operations, if necessary. If the device supports playback, the driver's
GetOverlayModeFunc function must provide a return value that indicates the video formats the
device can accept.

Video Capture Driver Reference
The following sections describe the messages, functions, structures, and macros used by video
capture drivers.

Sections relating to user-mode drivers include:

• Messages, User-Mode Video Capture Drivers
• Structures, User-Mode Video Capture Drivers
• Functions, VCUser.lib
• Structures, VCUser.lib

Sections relating to kernel-mode drivers include:

• Functions, VCKernel.lib
• Structures, VCKernel.lib
• Driver Functions Used with VCKernel.lib

Video Capture Driver Reference
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 237 Windows NT DDK

• Macros, Kernel-Mode Video Capture Drivers

Messages, User-Mode Video Capture Drivers
This section describes the messages received by user-mode video capture drivers. The
messages are listed in alphabetical order. They are defined in msviddrv.h and msvideo.h.

DVM_CONFIGURESTORAGE
The DVM_CONFIGURESTORAGE message requests a user-mode video capture driver to save
or restore a video channel's configuration parameters.

Parameters
dwDriverID

Video channel identifier. One of VIDEO_EXTERNALIN, VIDEO_IN, VIDEO_OUT,
VIDEO_EXTERNALOUT. (For details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_CONFIGURESTORAGE

lParam1
Pointer to a client-specified unique string.

lParam2
Contains flags. The following flags are defined:

Flag Definition
VIDEO_CONFIGURE_GET The channel's configuration parameters should be

restored from a file.
VIDEO_CONFIGURE_SET The channel's configuration parameters should be

saved in a file.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_CONFIGURESTORAGE message by calling the driver's DriverProc
entry point, passing the specified parameter values. Applications can send this message by
calling the videoConfigureStorage function, which is described in the Video for Windows
Development Kit.

If the value contained in lParam2 is VIDEO_CONFIGURE_SET, the driver should store the
specified channel's current configuration parameters in a file. The file name should consist of, or
be based on, the string pointed to by lParam1.

If the value contained in lParam2 is VIDEO_CONFIGURE_GET, the driver should read the
specified channel's saved configuration parameters from the saved file, and use them as the
channel's current settings. You can assume the client will specify the same lParam1 value for
saving and restoring the parameters.

DVM_DIALOG
The DVM_DIALOG message requests a user-mode video capture driver to display a dialog box
that obtains user-specified parameters for a video channel.

Parameters

DVM_DIALOG
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 238 Windows NT DDK

dwDriverID
Video channel identifier. One of VIDEO_EXTERNALIN, VIDEO_IN, VIDEO_OUT,
VIDEO_EXTERNALOUT. (See Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_DIALOG

lParam1
Contains the handle to the parent window.

lParam2
Contains flags. The following flags are defined.

Flag Definition
VIDEO_DLG_QUERY See the following Comments section.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_DIALOG message by calling the driver's DriverProc entry point, passing
the specified parameter values. Applications can send this message by calling the videoDialog
function, which is described in the Video for Windows Development Kit.

If the driver provides a dialog box for the specified channel, it should obtain user settings and
store them in the registry, as explained in Configuring Video Channels.

If a client sends a DVM_DIALOG message and specifies a channel for which the driver does not
provide a dialog box, the driver should return DV_ERR_NOTSUPPORTED.

If the VIDEO_DLG_QUERY flag is set in dwParam2 and the driver supports a dialog box for the
specified channel, it should return DV_ERR_OK. If the flag is set and the driver does not provide
a dialog box for the channel, it should return DV_ERR_NOTSUPPORTED.

DVM_DST_RECT
The DVM_DST_RECT message requests a user-mode video capture driver to set or return a
video channel's destination rectangle.

Parameters
dwDriverID

Video channel identifier. One of VIDEO_EXTERNALIN, VIDEO_IN, VIDEO_OUT,
VIDEO_EXTERNALOUT. (For details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_DST_RECT

lParam1
Pointer to a RECT structure. For more information on the RECT structure, see the Win32 SDK.

lParam2
Contains flags. The following flags are defined.

Flag Definition
VIDEO_CONFIGURE_CURRENT The driver sets or returns the current destination

rectangle description.
VIDEO_CONFIGURE_GET The driver returns the current rectangle

description to the client.

DVM_DST_RECT
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 239 Windows NT DDK

VIDEO_CONFIGURE_MAX The driver returns the maximum allowable
destination rectangle size. (Used only with
VIDEO_CONFIGURE_GET.)

VIDEO_CONFIGURE_MIN The driver returns the minimum allowable
destination rectangle size. (Used only with
VIDEO_CONFIGURE_GET.)

VIDEO_CONFIGURE_QUERY The driver indicates whether or not it supports
the specified request.

VIDEO_CONFIGURE_SET The driver receives a client-specified rectangle
description.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_DST_RECT message by calling the driver's DriverProc entry point,
passing the specified parameter values. Applications can send this message by calling the
videoMessage function, which is described in the Video for Windows Development Kit.

The driver should test the VIDEO_CONFIGURE_SET and VIDEO_CONFIGURE_GET flags to
determine whether to set or to return a rectangle description. If neither of these flags is set, the
driver should return an error code.

The meaning of a destination rectangle is dependent on the specified video channel, as explained
in Setting Source and Destination Rectangles.

User-mode video capture drivers using VCUser.lib can call VC_SetOverlayRect when processing
the DVM_DST_RECT message for the VIDEO_EXTERNALOUT channel.

DVM_FORMAT
The DVM_FORMAT message requests a user-mode video capture driver to set a specified data
format, or to return the current format, for the specified channel.

Parameters
dwDriverID

Video channel identifier. One of VIDEO_EXTERNALIN, VIDEO_IN, VIDEO_OUT,
VIDEO_EXTERNALOUT. (For details, see Opening Video Channels.) Typically, drivers only
allow VIDEO_IN for this message.

hDriver
Driver handle.

uMsg
DVM_FORMAT

lParam1
Contains flags. The following flags are defined.

Flag Definition
VIDEO_CONFIGURE_CURRENT The driver sets or returns the current

format.
VIDEO_CONFIGURE_GET The driver returns the requested

information to the client.
VIDEO_CONFIGURE_MAX The driver returns the maximum-sized

format. (Used only with
VIDEO_CONFIGURE_GET.)

VIDEO_CONFIGURE_MIN The driver returns the minimum-sized
format. (Used only with

DVM_FORMAT
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 240 Windows NT DDK

VIDEO_CONFIGURE_GET.)
VIDEO_CONFIGURE_NOMINAL The driver returns the nominal format.

(Used only with
VIDEO_CONFIGURE_GET.)

VIDEO_CONFIGURE_QUERY The driver indicates whether or not it
supports the specified request.

VIDEO_CONFIGURE_QUERYSIZE The driver returns the size, in bytes, of the
format description.

VIDEO_CONFIGURE_SET The driver sets a client-specified format
description.

lParam2
Pointer to a VIDEOCONFIGPARMS structure. For the DVM_FORMAT message, the structure
members are used as follows:
lpdwReturn

Pointer to a DWORD in which the driver returns the size, in bytes, of the
BITMAPINFOHEADER structure, if the VIDEO_CONFIGURE_QUERYSIZE flag is set.

lpData1
Pointer to a client-supplied BITMAPINFOHEADER structure. (For more information about
the BITMAPINFOHEADER structure, see the Win32 SDK.)

dwSize1
Size, in bytes, of the BITMAPINFOHEADER structure.

lpData2
Not used.

dwSize2
Not used.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_FORMAT message by calling the driver's DriverProc entry point,
passing the specified parameter values. Applications can send this message by calling the
videoConfigure function, which is described in the Video for Windows Development Kit.

The driver should test the VIDEO_CONFIGURE_SET and VIDEO_CONFIGURE_GET flags to
determine whether to set or to return a format description. If neither of these flags is set, the
driver should return an error code.

When a client sends this message, it must also include the address of a BITMAPINFOHEADER
structure (unless either the VIDEO_CONFIGURE_QUERY or VIDEO_CONFIGURE_QUERYSIZE
flag is set). Depending on whether the client has set VIDEO_CONFIGURE_SET or
VIDEO_CONFIGURE_GET, the driver either reads or writes the contents of this structure.

If the VIDEO_CONFIGURE_QUERYSIZE flag is set, the driver just returns the size of the
BITMAPINFOHEADER structure.

For more information on how drivers should allow applications and users to set the video data
format, see Setting the Video Data Format.

User-mode video capture drivers using VCUser.lib can call VC_ConfigFormat when processing
the DVM_FORMAT message.

DVM_FRAME
The DVM_FRAME message requests a user-mode video capture driver to transfer a single frame
to or from the video device.

DVM_FRAME
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 241 Windows NT DDK

Parameters
dwDriverID

Video channel identifier. One of VIDEO_EXTERNALIN, VIDEO_IN, VIDEO_OUT,
VIDEO_EXTERNALOUT. (For details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_FRAME

lParam1
Pointer to a VIDEOHDR structure.

lParam2
Size of the VIDEOHDR structure.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_FRAME message by calling the driver's DriverProc entry point, passing
the specified parameter values. Applications can send this message by calling the videoFrame
function, which is described in the Video for Windows Development Kit.

The client uses the VIDEOHDR structure to specify a buffer. The driver uses this buffer as either
a destination or source for DIB-formatted data, depending on whether the specified channel is
VIDEO_IN or VIDEO_OUT. For the VIDEO_IN channel, the driver transfers data from the
device's frame buffer into the specified buffer. For the VIDEO_OUT channel, the driver transfers
data from the specified buffer into the device's frame buffer.

The driver should process this message synchronously, not returning to the client until the transfer
is complete.

The sample video capture drivers only support the DVM_FRAME message for the VIDEO_IN
channel.

For more information about handling the DVM_FRAME message, see Transferring Single Frames.

User-mode video capture drivers using VCUser.lib can call VC_Frame when processing the
DVM_FRAME message for the VIDEO_IN channel.

DVM_GET_CHANNEL_CAPS
The DVM_GET_CHANNEL_CAPS message requests a user-mode video capture driver to return
the capabilities of a video channel.

Parameters
dwDriverID

Video channel identifier. One of VIDEO_EXTERNALIN, VIDEO_IN, VIDEO_OUT,
VIDEO_EXTERNALOUT. (For details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_GET_CHANNEL_CAPS

lParam1
Pointer to a CHANNEL_CAPS structure.

lParam2
Size of the CHANNEL_CAPS structure.

Return Value

DVM_GET_CHANNEL_CAPS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 242 Windows NT DDK

The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_GET_CHANNEL_CAPS message by calling the driver's DriverProc
entry point, passing the specified parameter values. Applications can send this message by
calling the videoGetChannelCaps function, which is described in the Video for Windows
Development Kit.

The driver fills in the client-supplied CHANNEL_CAPS structure with channel information for the
specified channel.

DVM_GETERRORTEXT
The DVM_GETERRORTEXT message requests a user-mode video capture driver to return a text
string associated with an error code.

Parameters
dwDriverID

Video channel identifier. One of VIDEO_EXTERNALIN, VIDEO_IN, VIDEO_OUT,
VIDEO_EXTERNALOUT. (For details, see Opening Video Channels.) Can be NULL for this
message.

hDriver
Driver handle.

uMsg
DVM_GETERRORTEXT

lParam1
Pointer to a VIDEO_GETERRORTEXT_PARMS structure.

lParam2
Not used.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h.

Comments
A client sends the DVM_GETERRORTEXT message by calling the driver's DriverProc entry
point, passing the specified parameter values. Applications can send this message by calling the
videoGetErrorText function, which is described in the Video for Windows Development Kit.

You can define customized error codes for a video capture driver. If you do, you need to also
define a text string for each error code and place the strings in a resource (.rc) file. Clients use the
DVM_GETERRORTEXT message to retrieve the text string for a specified custom error code.

Drivers should call the LoadString function, described in the Win32 SDK, to retrieve a string.
This function truncates the string if the supplied buffer is too small.

DVM_GETVIDEOAPIVER
The DVM_GETVIDEOAPIVER message requests a user-mode video capture driver to return the
version of the video capture API used by the driver.

Parameters
dwDriverID

Video channel identifier. One of VIDEO_EXTERNALIN, VIDEO_IN, VIDEO_OUT,
VIDEO_EXTERNALOUT. (For details, see Opening Video Channels.) Can be NULL for this
message.

hDriver

DVM_GETVIDEOAPIVER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 243 Windows NT DDK

Driver handle.
uMsg

DVM_GETVIDEOAPIVER
lParam1

Pointer to a DWORD to receive the version.
lParam2

Not used.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_GETVIDEOAPIVER message by calling the driver's DriverProc entry
point, passing the specified parameter values. Applications can send this message by calling the
videoMessage function, which is described in the Video for Windows Development Kit.

The driver should respond to this message by returning the VIDEOAPIVERSION constant in the
address pointed to by the lParam1 parameter. The VIDEOAPIVERSION constant is defined in
msviddrv.h.

DVM_PALETTE
The DVM_PALETTE message requests a user-mode video capture driver to store or return a
logical palette.

Parameters
dwDriverID

Video channel identifier. One of VIDEO_EXTERNALIN, VIDEO_IN, VIDEO_OUT,
VIDEO_EXTERNALOUT. (For details, see Opening Video Channels.) Typically, drivers only
allow VIDEO_IN for this message.

hDriver
Driver handle.

uMsg
DVM_PALETTE

lParam1
Contains flags. The following flags are defined.

Flag Definition
VIDEO_CONFIGURE_CURRENT The driver sets or returns the current

palette.
VIDEO_CONFIGURE_GET The driver returns the requested

information to the client.
VIDEO_CONFIGURE_MAX The driver returns the maximum-sized

palette. (Used only with
VIDEO_CONFIGURE_GET.)

VIDEO_CONFIGURE_MIN The driver returns the minimum-sized
palette. (Used only with
VIDEO_CONFIGURE_GET.)

VIDEO_CONFIGURE_NOMINAL The driver returns the nominal palette.
(Used only with
VIDEO_CONFIGURE_GET.)

VIDEO_CONFIGURE_QUERY The driver indicates whether or not it
supports the specified request.

VIDEO_CONFIGURE_QUERYSIZE The driver returns the size, in bytes, of the
current palette.

DVM_PALETTE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 244 Windows NT DDK

VIDEO_CONFIGURE_SET The driver sets a client-specified palette
description.

lParam2
Pointer to a VIDEOCONFIGPARMS structure. For the DVM_PALETTE message, the structure
members are used as follows:
lpdwReturn

Pointer to a DWORD in which the driver returns the size, in bytes, of the currently stored
palette, if the VIDEO_CONFIGURE_QUERYSIZE flag is set.

lpData1
Pointer to a client-supplied LOGPALETTE structure. (For more information about the
LOGPALETTE structure, see the Win32 SDK.)

dwSize1
Size, in bytes, of the LOGPALETTE structure.

lpData2
Not used.

dwSize2
Not used.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_PALETTE message by calling the driver's DriverProc entry point,
passing the specified parameter values. Applications can send this message by calling the
videoConfigure function, which is described in the Video for Windows Development Kit.

The driver should test the VIDEO_CONFIGURE_SET and VIDEO_CONFIGURE_GET flags to
determine whether to set or to return a format description. If neither of these flags is set, the
driver should return an error code.

When a client sends this message, it must also include the address of a LOGPALETTE structure
(unless either the VIDEO_CONFIGURE_QUERY or VIDEO_CONFIGURE_QUERYSIZE flag is
set). Depending on whether the client has set VIDEO_CONFIGURE_SET or
VIDEO_CONFIGURE_GET, the driver either writes or reads the contents of this structure.

If the VIDEO_CONFIGURE_QUERYSIZE flag is set, the driver just returns the size of the
currently stored palette, including the palette entry array.

For more information on how drivers can handle palettes and color translation tables, see Setting
Palettes.

User-mode video capture drivers using VCUser.lib can call VC_ConfigFormat when processing
the DVM_PALETTE message.

See Also
DVM_PALETTERGB555

DVM_PALETTERGB555
The DVM_PALETTERGB555 message requests a user-mode video capture driver to store a
logical palette and an RGB555 translation table.

Parameters
dwDriverID

Video channel identifier. One of VIDEO_EXTERNALIN, VIDEO_IN, VIDEO_OUT,
VIDEO_EXTERNALOUT. (For details, see Opening Video Channels.) Typically, drivers only
allow VIDEO_IN for this message.

DVM_PALETTERGB555
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 245 Windows NT DDK

hDriver
Driver handle.

uMsg
DVM_PALETTERGB555

lParam1
Contains flags. The following flags are defined.

Flag Definition
VIDEO_CONFIGURE_SET The driver sets a client-specified palette

description and translation table.
VIDEO_CONFIGURE_QUERY The driver indicates whether or not it supports the

DVM_PALETTERGB555 message.

lParam2
Pointer to a VIDEOCONFIGPARMS structure. For the DVM_PALETTERGB555 message, the
structure members are used as follows:
lpdwReturn

Pointer to a DWORD in which the driver returns the size, in bytes, of the currently stored
palette, if the VIDEO_CONFIGURE_QUERYSIZE flag is set.

lpData1
Pointer to a client-supplied LOGPALETTE structure. (For more information about the
LOGPALETTE structure, see the Win32 SDK.)

dwSize1
Size, in bytes, of the LOGPALETTE structure.

lpData2
Pointer to a 32-kilobyte RGB555 translation table.

dwSize2
Size of the translation table. Must be 32768.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_PALETTERGB555 message by calling the driver's DriverProc entry
point, passing the specified parameter values. Applications can send this message by calling the
videoConfigure function, which is described in the Video for Windows Development Kit.

This message does not support the VIDEO_CONFIGURE_GET flag. Clients can send
DVM_PALETTE to obtain the current palette.

For more information on how drivers can handle palettes and color translation tables, see Setting
Palettes.

User-mode video capture drivers using VCUser.lib can call VC_ConfigFormat when processing
the DVM_PALETTERGB555 message.

DVM_SRC_RECT
The DVM_SRC_RECT message requests a user-mode video capture driver to set or return a
video channel's source rectangle.

Parameters
dwDriverID

Video channel identifier. One of VIDEO_EXTERNALIN, VIDEO_IN, VIDEO_OUT,
VIDEO_EXTERNALOUT. (For details, see Opening Video Channels.)

hDriver
Driver handle.

DVM_SRC_RECT
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 246 Windows NT DDK

uMsg
DVM_SRC_RECT

lParam1
Pointer to a RECT structure. For more information on the RECT structure, see the Win32 SDK.

lParam2
Contains flags. The following flags are defined.

Flag Definition
VIDEO_CONFIGURE_CURRENT The driver sets or returns the current source

rectangle description.
VIDEO_CONFIGURE_GET The driver returns the current rectangle

description to the client.
VIDEO_CONFIGURE_MAX The driver returns the maximum allowable

source rectangle size. (Used only with
VIDEO_CONFIGURE_GET.)

VIDEO_CONFIGURE_MIN The driver returns the minimum allowable
source rectangle size. (Used only with
VIDEO_CONFIGURE_GET.)

VIDEO_CONFIGURE_QUERY The driver indicates whether or not it supports
the specified request.

VIDEO_CONFIGURE_SET The driver receives a client-specified rectangle
description.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_SRC_RECT message by calling the driver's DriverProc entry point,
passing the specified parameter values. Applications can send this message by calling the
videoMessage function, which is described in the Video for Windows Development Kit.

The driver should test the VIDEO_CONFIGURE_SET and VIDEO_CONFIGURE_GET flags to
determine whether to set or to return a rectangle description. If neither of these flags is set, the
driver should return an error code.

The meaning of a source rectangle is dependent on the specified video channel, as explained in
Setting Source and Destination Rectangles.

User-mode video capture drivers using VCUser.lib can call VC_SetOverlayOffset when
processing the DVM_SRC_RECT message on the VIDEO_EXTERNALIN channel.

DVM_STREAM_ADDBUFFER
The DVM_STREAM_ADDBUFFER message requests a user-mode video capture driver to add
an empty input buffer to its input buffer queue.

Parameters
dwDriverID

Video channel identifier. For this message, the driver should only accept VIDEO_IN. (For
details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_STREAM_ADDBUFFER

lParam1

DVM_STREAM_ADDBUFFER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 247 Windows NT DDK

Pointer to a VIDEOHDR structure.
lParam2

Size of the VIDEOHDR structure.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_STREAM_ADDBUFFER message by calling the driver's DriverProc
entry point, passing the specified parameter values. Applications can send this message by
calling the videoStreamAddBuffer function, which is described in the Video for Windows
Development Kit.

The VIDEOHDR structure describes the buffer. Before a buffer can be added to the driver's
queue, the client must prepare it by sending a DVM_STREAM_PREPAREHEADER message.
Drivers can confirm that the buffer has been prepared by testing the VHDR_PREPARED flag in
the VIDEOHDR structure's dwFlags member. Code in msvfw32.dll and avicap32.dll checks this
flag before sending a DVM_STREAM_ADDBUFFER message.

Drivers assume that the VIDEOHDR structure and the data buffer pointed to by its lpData
member have been allocated with GlobalAlloc, using the GMEM_MOVEABLE and
GMEM_SHARE flags, and locked with GlobalLock. (For further information about GlobalAlloc
and GlobalLock, see the Win32 SDK.)

For information about using data buffers with video capture streams, see Transferring streams of
Captured Data.

User-mode video capture drivers using VCUser.lib can call VC_StreamAddBuffer when
processing the DVM_STREAM_ADDBUFFER message.

DVM_STREAM_ALLOCBUFFER
The DVM_STREAM_ALLOCBUFFER message requests a user-mode video capture driver to
allocate a buffer from a device's local, non-system memory.

Parameters
dwDriverID

Video channel identifier. One of VIDEO_EXTERNALIN, VIDEO_IN, VIDEO_OUT,
VIDEO_EXTERNALOUT. (For details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_STREAM_ALLOCBUFFER

lParam1
Pointer to a location to receive the address of the returned buffer.

lParam2
Requested buffer size, in bytes.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_STREAM_ALLOCBUFFER message by calling the driver's DriverProc
entry point, passing the specified parameter values. Applications can send this message by
calling the videoMessage function, which is described in the Video for Windows Development Kit.

DVM_STREAM_ALLOCBUFFER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 248 Windows NT DDK

If the hardware provides on-board memory that can be used as buffer space to receive captured
video data, the driver should allocate a buffer using the size specified by lParam2, return the
buffer's address in the location pointed to by lParam1, and provide a return value of
DV_ERR_OK. If no buffer space is available, the driver should return NULL in the location
pointed to by lParam1. If the hardware does not provide on-board memory, the driver should
return DV_ERR_NOTSUPPORTED.

Note: The video capture driver libraries, VCUser.lib and VCKernel.lib, do not support this
message. Therefore, the sample video capture drivers do not support the message either.

See Also
DVM_STREAM_ADDBUFFER

DVM_STREAM_FREEBUFFER

DVM_STREAM_FINI
The DVM_STREAM_FINI message requests a user-mode video capture driver to close a capture
stream on a video channel.

Parameters
dwDriverID

Video channel identifier. For this message, the driver should only accept
VIDEO_EXTERNALIN, VIDEO_IN, and VIDEO_EXTERNALOUT. (For details, see Opening
Video Channels.)

hDriver
Driver handle.

uMsg
DVM_STREAM_FINI

lParam1
Not used.

lParam2
Not used.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_STREAM_FINI message by calling the driver's DriverProc entry point,
passing the specified parameter values. Applications can send this message by calling the
videoStreamFini function, which is described in the Video for Windows Development Kit.

If all the input buffers sent with DVM_STREAM_ADDBUFFER haven't been returned to the client,
the driver should fail the message. If all buffers have been returned, the driver requests the
kernel-mode driver to disable the hardware's data capture and overlay operations.

After the driver has finished closing the VIDEO_IN channel, it must send an MM_DRVM_CLOSE
callback message.

For more information about video capture streams, see Transferring streams of Captured Data.

User-mode video capture drivers using VCUser.lib can call the following functions to terminate a
stream, based on the specified channel.

Channel VCUser.lib Function
VIDEO_EXTERNALIN VC_Capture
VIDEO_IN VC_StreamFini
VIDEO_EXTERNALOUT VC_Overlay

DVM_STREAM_FINI
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 249 Windows NT DDK

See Also
DVM_STREAM_INIT

DVM_STREAM_FREEBUFFER
The DVM_STREAM_FREEBUFFER message requests a user-mode video capture driver to free
a buffer that was allocated in response to a DVM_STREAM_ALLOCBUFFER message.

Parameters
dwDriverID

Video channel identifier. One of VIDEO_EXTERNALIN, VIDEO_IN, VIDEO_OUT,
VIDEO_EXTERNALOUT. (For details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_STREAM_FREEBUFFER

lParam1
Buffer address returned in response to a previous DVM_STREAM_ALLOCBUFFER message.

lParam2
Not used.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_STREAM_FREEBUFFER message by calling the driver's DriverProc
entry point, passing the specified parameter values. Applications can send this message by
calling the videoMessage function, which is described in the Video for Windows Development Kit.

If the hardware provides on-board memory that can be used as buffer space to receive captured
video data, the driver can support the DVM_STREAM_ALLOCBUFFER and
DVM_STREAM_FREEBUFFER messages. The DVM_STREAM_FREEBUFFER message is
used to deallocate buffer space that was allocated in response to
DVM_STREAM_ALLOCBUFFER. If the hardware does not provide on-board memory, the driver
should return DVM_ERR_NOTUSUPPORTED.

Note: The video capture driver libraries, VCUser.lib and VCKernel.lib, do not support this
message. Therefore, the sample video capture drivers do not support the message either.

DVM_STREAM_GETERROR
The DVM_STREAM_GETERROR message requests a user-mode video capture driver to return
a capture stream's current error status.

Parameters
dwDriverID

Video channel identifier. For this message, the driver should only accept VIDEO_IN. (For
details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_STREAM_GETERROR

lParam1
Pointer to a DWORD to receive an error code.

DVM_STREAM_GETERROR
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 250 Windows NT DDK

lParam2
Pointer to a DWORD to receive the number of frames dropped.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_STREAM_GETERROR message by calling the driver's DriverProc entry
point, passing the specified parameter values. Applications can send this message by calling the
videoStreamGetError function, which is described in the Video for Windows Development Kit.

When the driver receives this message it should return an error code (defined in msvideo.h)
indicating the current status of the capture stream.

If the driver has had to drop captured frames because the client has not sent enough buffers to
receive them, the driver should return DV_ERR_NO_BUFFERS in the address pointed to by
lParam1, and should return the number of dropped frames in the address pointed to by lParam2.
The driver should then reset its count of dropped frames to zero.

For more information about video capture streams, see Transferring streams of Captured Data.

User-mode video capture drivers using VCUser.lib can call VC_GetStreamError when processing
the DVM_STREAM_GETERROR message.

DVM_STREAM_GETPOSITION
The DVM_STREAM_GETPOSITION message requests a user-mode video capture driver to
return the current stream position.

Parameters
dwDriverID

Video channel identifier. For this message, the driver should only accept VIDEO_IN. (For
details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_STREAM_GETPOSITION

lParam1
Pointer to an MMTIME structure. (The MMTIME structure is defined in mmsystem.h and
described in the Win32 SDK.)

lParam2
Size, in bytes, of the MMTIME structure.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_STREAM_GETPOSITION message by calling the driver's DriverProc
entry point, passing the specified parameter values. Applications can send this message by
calling the videoStreamGetPosition function, which is described in the Video for Windows
Development Kit.

The client specifies a requested time format in the MMTIME structure's wType member. If the
driver cannot support the requested format, it uses a format it can support, and places the format
type in wType. Video-capture drivers generally use the millisecond time format.

The driver should initialize the stream position when it receives a DVM_STREAM_START or a

DVM_STREAM_GETPOSITION
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 251 Windows NT DDK

DVM_STREAM_RESET message.

For more information about video capture streams, see Transferring streams of Captured Data.

User-mode video capture drivers using VCUser.lib can call VC_GetStreamPos when processing
the DVM_STREAM_GETPOSITION message.

DVM_STREAM_INIT
The DVM_STREAM_INIT message requests a user-mode video capture driver to initialize a video
channel for streaming.

Parameters
dwDriverID

Video channel identifier. For this message, the driver should only accept
VIDEO_EXTERNALIN, VIDEO_IN, and VIDEO_EXTERNALOUT. (For details, see Opening
Video Channels.)

hDriver
Driver handle.

uMsg
DVM_STREAM_INIT

lParam1
Pointer to a VIDEO_STREAM_INIT_PARMS structure.

lParam2
Size, in bytes, of the VIDEO_STREAM_INIT_PARMS structure.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_STREAM_INIT message by calling the driver's DriverProc entry point,
passing the specified parameter values. Applications can send this message by calling the
videoStreamInit function, which is described in the Video for Windows Development Kit.

Typical stream initialization operations include requesting the kernel-mode driver to enable the
hardware's data capture and overlay operations.

The VIDEO_STREAM_INIT_PARMS structure contains the client-specified capture frequency. It
also contains callback information for use when notifying clients of events. For more information
about notifying clients, see Notifying Clients from Video Capture Drivers.

After the driver finishes initializing the VIDEO_IN channel, it must send an MM_DRVM_OPEN
callback message.

For more information about video capture streams, see Transferring streams of Captured Data.

User-mode video capture drivers using VCUser.lib can call the following functions to initialize a
stream, based on the specified channel.

Channel VCUser.lib Function
VIDEO_EXTERNALIN VC_Capture
VIDEO_IN VC_StreamInit
VIDEO_EXTERNALOUT VC_Overlay

DVM_STREAM_PREPAREHEADER
The DVM_STREAM_PREPAREHEADER message requests a user-mode video capture driver to
prepare a data buffer for use.

DVM_STREAM_PREPAREHEADER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 252 Windows NT DDK

Parameters
dwDriverID

Video channel identifier. For this message, the driver should only accept VIDEO_IN. (For
details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_STREAM_PREPAREHEADER

lParam1
Pointer to a VIDEOHDR structure.

lParam2
Size of the VIDEOHDR structure.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_STREAM_PREPAREHEADER message by calling the driver's
DriverProc entry point, passing the specified parameter values. Applications can send this
message by calling the videoStreamPrepareHeader function, which is described in the Video for
Windows Development Kit.

Use of this message is meant to ensure that the specified buffer is accessible by the kernel-mode
driver. If the driver returns DV_ERR_NOTSUPPORTED, then msvfw32.dll or avicap32.dll will
prepare the buffer. For most drivers, this behavior is sufficient. If the driver does perform buffer
preparation, it should return DV_ERR_OK, which causes msvfw32.dll or avicap32.dll to set the
VHDR_PREPARED flag in the VIDEOHDR structure's dwFlags member.

Drivers assume that the VIDEOHDR structure and the data buffer pointed to by its lpData
member have been allocated with GlobalAlloc, using the GMEM_MOVEABLE and
GMEM_SHARE flags, and locked with GlobalLock. (For further information about GlobalAlloc
and GlobalLock, see the Win32 SDK.)

For information about using data buffers with video capture streams, see Transferring Streams of
Captured Data.

DVM_STREAM_RESET
The DVM_STREAM_RESET message requests a user-mode video capture driver to stop input of
a capture stream, return all buffers to the client, and set the current position to zero.

Parameters
dwDriverID

Video channel identifier. For this message, the driver should only accept VIDEO_IN. (For
details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_STREAM_RESET

lParam1
Not used.

lParam2
Not used.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one

DVM_STREAM_RESET
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 253 Windows NT DDK

of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_STREAM_RESET message by calling the driver's DriverProc entry
point, passing the specified parameter values. Applications can send this message by calling the
videoStreamReset function, which is described in the Video for Windows Development Kit.

When a driver receives DVM_STREAM_RESET, it should restore the state that it established in
response to a DVM_STREAM_INIT message. For each unused buffer that was received with a
DVM_STREAM_ADDBUFFER message, the driver must set VHDR_DONE in the dwFlags
member of the buffer's VIDEOHDR structure and then send an MM_DRVM_DATA callback
message.

After a client sends DVM_STREAM_RESET, you should expect it to send either a
DVM_STREAM_START message to restart the stream or a DVM_STREAM_FINI message to
terminate the stream.

For more information about video capture streams, see Transferring streams of Captured Data.

User-mode video capture drivers using VCUser.lib can call VC_StreamReset when processing
the DVM_STREAM_RESET message.

DVM_STREAM_START
The DVM_STREAM_START message requests a user-mode video capture driver to start a video
stream.

Parameters
dwDriverID

Video channel identifier. For this message, the driver should only accept VIDEO_IN. (For
details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_STREAM_START

lParam1
Not used.

lParam2
Not used.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_STREAM_START message by calling the driver's DriverProc entry
point, passing the specified parameter values. Applications can send this message by calling the
videoStreamStart function, which is described in the Video for Windows Development Kit.

When a driver receives this message, it should begin transferring frame buffer contents to queued
data buffers. Typically, a user-mode driver creates a separate thread to handle communication
with the kernel-mode driver. Data buffers should be filled and returned to the client in the order
they are received from the client.

Each time a buffer has been filled, the user-mode driver should set VHDR_DONE in the dwFlags
member of the buffer's VIDEOHDR structure, and then send an MM_DRVM_DATA callback
message to the client.

For more information about video capture streams, see Transferring Streams of Captured Data.

DVM_STREAM_START
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 254 Windows NT DDK

User-mode video capture drivers using VCUser.lib can call VC_StreamStart when processing the
DVM_STREAM_START message.

DVM_STREAM_STOP
The DVM_STREAM_STOP message requests a user-mode video capture driver to stop a video
stream.

Parameters
dwDriverID

Video channel identifier. For this message, the driver should only accept VIDEO_IN. (For
details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_STREAM_STOP

lParam1
Not used.

lParam2
Not used.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_STREAM_STOP message by calling the driver's DriverProc entry point,
passing the specified parameter values. Applications can send this message by calling the
videoStreamStop function, which is described in the Video for Windows Development Kit.

When a driver receives this message it stops the input stream, typically by requesting the
kernel-mode driver to disable capture interrupts. The driver retains its queue of empty buffers. If a
buffer has been partially filled, the driver marks it as done and places the actual length of the data
in the dwBytesUsed member of the buffer's VIDEOHDR structure.

If the client has not previously sent a DVM_STREAM_START message, the
DVM_STREAM_STOP message has no effect and the driver should return DV_ERR_OK.

For more information about video capture streams, see Transferring Streams of Captured Data.

User-mode video capture drivers using VCUser.lib can call VC_StreamStop when processing the
DVM_STREAM_STOP message.

DVM_STREAM_UNPREPAREHEADER
The DVM_STREAM_UNPREPAREHEADER message requests a user-mode video capture driver
to remove the preparation from a data buffer.

Parameters
dwDriverID

Video channel identifier. For this message, the driver should only accept VIDEO_IN. (For
details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_STREAM_UNPREPAREHEADER

lParam1
Pointer to a VIDEOHDR structure.

DVM_STREAM_UNPREPAREHEADER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 255 Windows NT DDK

lParam2
Size of the VIDEOHDR structure.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_STREAM_UNPREPAREHEADER message by calling the driver's
DriverProc entry point, passing the specified parameter values. Applications can send this
message by calling the videoStreamUnprepareHeader function, which is described in the Video
for Windows Development Kit.

Use of this message is meant to remove the preparation that was performed by means of a
DVM_STREAM_PREPAREHEADER message. If the driver returns DV_ERR_NOTSUPPORTED,
then msvfw32.dll or avicap32.dll will remove the preparation. For most drivers, this behavior is
sufficient. If the driver does remove buffer preparation, it should return DV_ERR_OK, which
causes msvfw32.dll or avicap32.dll to clear the VHDR_PREPARED flag in the VIDEOHDR
structure's dwFlags member.

If the driver receives a DVM_STREAM_UNPREPAREHEADER message for a buffer that has not
been prepared, the driver should just return DV_ERR_OK.

For information about using data buffers with video capture streams, see Transferring streams of
Captured Data.

DVM_UPDATE
The DVM_UPDATE message requests a user-mode video capture driver to update the overlay
display.

Parameters
dwDriverID

Video channel identifier. For this message, the driver should only accept
VIDEO_EXTERNALOUT. (For details, see Opening Video Channels.)

hDriver
Driver handle.

uMsg
DVM_UPDATE

lParam1t
Handle to a client window.

lParam2
Handle to a display device context.

Return Value
The driver should return DV_ERR_OK if the operation succeeds. Otherwise, it should return one
of the DV_ERR error codes defined in msvideo.h. Custom error codes are also allowed (see
DVM_GETERRORTEXT).

Comments
A client sends the DVM_UPDATE message by calling the driver's DriverProc entry point, passing
the specified parameter values. Applications can send this message by calling the videoUpdate
function, which is described in the Video for Windows Development Kit.

If the hardware supports color keying, the driver should repaint the current key color onto the
overlay area. If the key color has not yet been specified, the driver should specify it. The driver
should create a brush using the key color, convert the screen coordinates describing the overlay
area into client coordinates, and repaint the overlay area, as illustrated in the sample drivers.

DVM_UPDATE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 256 Windows NT DDK

Typically, a client sends this message whenever its window receives a WM_PAINT, WM_MOVE,
WM_POSITIONCHANGED, or WM_SIZE message. It also typically sends the message after
sending a DVM_SRC_RECT or DVM_DST_RECT message.

User-mode video capture drivers using VCUser.lib can call the following functions to set or to
determine the key color:

VC_GetKeyColour
VC_SetKeyColourPalIdx
VC_SetKeyColourRGB

MM_DRVM_CLOSE
The MM_DRVM_CLOSE callback message notifies a client that a user-mode video capture driver
has finished processing a DVM_STREAM_FINI message.

Parameters
dwMsg

MM_DRVM_CLOSE
dwParam1

Not used.
dwParam2

Not used.

Comments
A user-mode video capture driver sends an MM_DRVM_CLOSE message to its client, by means
of a callback, when the driver finishes processing a DVM_STREAM_FINI message. The driver
sends the message to the client by calling DriverCallback, passing the specified parameters.

The driver sends the MM_DRVM_CLOSE message only if the client has previously specified a
notification target with a DVM_STREAM_INIT message.

Drivers using VCUser.lib do not have to call DriverCallback to send callback messages. Code
within VCUser.lib handles delivery of callback messages for the driver.

For more information about notifying clients, see Notifying Clients from Video Capture Drivers.

MM_DRVM_DATA
The MM_DRVM_DATA callback message notifies a client that a user-mode video capture driver
has filled a buffer with capture data.

Parameters
dwMsg

MM_DRVM_DATA
dwParam1

Pointer to a VIDEOHDR structure describing the data buffer that has been filled.
dwParam2

Not used.

Comments
A user-mode video capture driver sends an MM_DRVM_DATA message to its client, by means of
a callback, when the driver has filled a buffer with capture data. The driver uses the dwParam1
argument to indicate which buffer has been filled. The driver sends the message to the client by
calling DriverCallback, passing the specified parameters.

The driver sends the MM_DRVM_DATA message only if the client has previously specified a
notification target with a DVM_STREAM_INIT message. The VIDEOHDR structure was received
along with a DVM_STREAM_ADDBUFFER message.

MM_DRVM_DATA
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 257 Windows NT DDK

Drivers using VCUser.lib do not have to call DriverCallback to send callback messages. Code
within VCUser.lib handles delivery of callback messages for the driver.

For more information about notifying clients, see Notifying Clients from Video Capture Drivers.

MM_DRVM_ERROR
The MM_DRVM_ERROR video capture message is sent to a client when a user-mode video
capture driver detects an error.

Parameters
dwMsg

MM_DRVM_ERROR
dwParam1

Number of frames dropped.
dwParam2

Not used.

Comments
A user-mode video capture driver sends an MM_DRVM_ERROR message to its client, by means
of a callback, when the driver detects an error. The driver sends the message to the client by
calling DriverCallback, passing the specified parameters.

A driver can send this message for any reason, but the message is typically used to report
dropped frames. The driver drops frames if the client has not provided enough buffers to receive
them. Drivers use the dwParam1 argument to indicate the number of dropped frames.

The driver sends the MM_DRVM_ERROR message only if the client has previously specified a
notification target with a DVM_STREAM_INIT message.

Drivers using VCUser.lib do not have to call DriverCallback to send callback messages. Code
within VCUser.lib handles delivery of callback messages for the driver.

For more information about notifying clients, see Notifying Clients from Video Capture Drivers.

MM_DRVM_OPEN
The MM_DRVM_OPEN callback message notifies a client that a user-mode video capture driver
has finished processing a DVM_STREAM_INIT message.

Parameters
dwMsg

MM_DRVM_OPEN
dwParam1

Not used.
dwParam2

Not used.

Comments
A user-mode video capture driver sends an MM_DRVM_OPEN message to its client, by means of
a callback, when the driver finishes processing a DVM_STREAM_INIT message. The driver
sends the message to the client by calling DriverCallback, passing the specified parameters.

The driver sends the MM_DRVM_OPEN message only if the client has specified a notification
target with the DVM_STREAM_INIT message.

Drivers using VCUser.lib do not have to call DriverCallback to send callback messages. Code
within VCUser.lib handles delivery of callback messages for the driver.

For more information about notifying clients, see Notifying Clients from Video Capture Drivers.

Structures, User-Mode Video Capture Drivers
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 258 Windows NT DDK

Structures, User-Mode Video Capture Drivers
This section describes the structures used by Win32-based video capture drivers. The structures
are listed in alphabetic order.

CHANNEL_CAPS
typedef struct {
DWORD dwFlags;
DWORD dwSrcRectXMod;
DWORD dwSrcRectYMod;
DWORD dwSrcRectWidthMod;
DWORD dwSrcRectHeightMod;
DWORD dwDstRectXMod;
DWORD dwDstRectYMod;
DWORD dwDstRectWidthMod;
DWORD dwDstRectHeightMod;
} CHANNEL_CAPS;
The CHANNEL_CAPS structure is used by user-mode video capture drivers to return the
capabilities of a video channel. Clients request channel capabilities by sending a
DVM_GET_CHANNEL_CAPS message. The structure is defined in msvideo.h.

Members
dwFlags

Returns flags providing information about the channel. The following flags are defined.
Flag Definition
VCAPS_OVERLAY Indicates the channel is capable of overlay. This

flag is used only for VIDEO_EXTERNALOUT
channels.

VCAPS_SRC_CAN_CLIP Indicates the source rectangle can be set smaller
than the maximum dimensions.

VCAPS_DST_CAN_CLIP Indicates the destination rectangle can be set
smaller than the maximum dimensions.

VCAPS_CAN_SCALE Indicates the source rectangle can be a different
size than the destination rectangle.

dwSrcRectXMod
Returns the granularity allowed when positioning the source rectangle in the horizontal direction.

dwSrcRectYMod
Returns the granularity allowed when positioning the source rectangle in the vertical direction.

dwSrcRectWidthMod
Returns the granularity allowed when setting the width of the source rectangle.

dwSrcRectHeightMod
Returns the granularity allowed when setting the height of the source rectangle.

dwDstRectXMod
Returns the granularity allowed when positioning the destination rectangle in the horizontal
direction.

dwDstRectYMod
Returns the granularity allowed when positioning the destination rectangle in the vertical
direction.

dwDstRectWidthMod
Returns the granularity allowed when setting the width of the destination rectangle.

dwDstRectHeightMod
Returns the granularity allowed when setting the height of the source rectangle.

Comments

CHANNEL_CAPS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 259 Windows NT DDK

For the video channel specified with the DVM_GET_CHANNEL_CAPS message, the driver fills in
the CHANNEL_CAPS structure with the granularity, in number of pixels, of the positioning points,
heights, and widths of source and destination rectangles. If, for example, the device only allows
source rectangle positioning on 8-bit x-coordinate boundaries, the value returned for
dwSrcRectXMod should be eight. If the device allows arbitrarily positioned rectangles, with
arbitrary sizes, the structure members should all be set to one.

Rectangle dimensions indicated by modulus operators are considered advisory. When an
application tries to set a rectangle size with a DVM_SRC_RECT or DVM_DST_RECT message,
you can assume it will check the return value to ensure that the driver accepted the request. For
example, if dwDstRectWidthMod is set to 64, the application might try to set destination
rectangles with pixel widths of 64, 128, 192, 256, and so on. The driver might support only a
subset of these sizes. If the application tries to specify an unsupported size, the driver should
return DV_ERR_NOTSUPPORTED.

VIDEO_GETERRORTEXT_PARMS
typedef struct {
DWORD dwError;
LPWSTR lpText;
DWORD dwLength;
} VIDEO_GETERRORTEXT_PARMS;
The VIDEO_GETERRORTEXT_PARMS structure is used by user-mode video capture drivers to
return error message text in response to a DVM_GETERRORTEXT message. The structure is
defined in msviddrv.h.

Members
dwError

Contains the error number.
lpText

Pointer to a buffer into which the driver places the error text string.
dwLength

Length of the buffer.

Comments
The client specifies the error number, along with the address and length of the string buffer. The
driver fills in the string buffer with the error text.

VIDEO_OPEN_PARMS
typedef struct {
DWORD dwSize;
FOURCC fccType;
FOURCC fccComp;
DWORD dwVersion;
DWORD dwFlags;
DWORD dwError;
LPVOID pV1Reserved;
LPVOID pV2Reserved;
DWORD dnDevNode;
} VIDEO_OPEN_PARMS;
The VIDEO_OPEN_PARMS structure defines the type of channel to open on a video-capture
device. User-mode video capture drivers receive this structure along with a DRV_OPEN
message. The structure is defined in msviddrv.h.

Members
dwSize

Contains the size of the VIDEO_OPEN_PARMS structure.

VIDEO_OPEN_PARMS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 260 Windows NT DDK

fccType
Contains a four-character code identifying the type of channel being opened. Must be "vcap".

fccComp
Not used.

dwVersion
Contains the current version of the video capture API, which is defined by VIDEOAPIVERSION
in msviddrv.h.

dwFlags
Specifies flags used to indicate the type of channel. The following flags are defined.

Flag Definition
VIDEO_EXTERNALIN Data path from an external video source, such as a TV,

VCR, or camera, into a frame buffer.
VIDEO_IN Data path from the frame buffer to system memory.
VIDEO_OUT Data path from system memory to the frame buffer.
VIDEO_EXTERNALOUT Data path from the frame buffer to an output display,

such as an overlay window on a user's screen.

dwError
Error value supplied by the driver if the open operation fails.

pV1Reserved
Reserved.

pV2Reserved
Reserved.

dnDevNode
Devnode for PnP devices.

Comments
The VIDEO_OPEN_PARMS structure is identical to the ICOPEN structure used by installable
compressors, allowing a single driver to handle both video capture and compression messages.

For more information about the VIDEO_OPEN_PARMS structure, see DriverProc in User-Mode
Video Capture Drivers and Opening Video Channels.

VIDEO_STREAM_INIT_PARMS
typedef struct {
DWORD dwMicroSecPerFrame;
DWORD dwCallback;
DWORD dwCallbackInst;
DWORD dwFlags;
DWORD hVideo;
} VIDEO_STREAM_INIT_PARMS;
The VIDEO_STREAM_INIT_PARMS structure contains information needed to initialize a video
capture stream. User-mode video-capture drivers receive this structure along with a
DVM_STREAM_INIT message. The structure is defined in msviddrv.h.

Members
dwMicroSecPerFrame

Contains the client-specified capture frequency, in microseconds. Represents how often the
driver should capture a frame.

dwCallback
Contains either the address of a callback function, a window handle, or NULL, based on flags
set in the dwFlags member.

dwCallbackInst
Contains client-specified instance data passed to the callback function, if
CALLBACK_FUNCTION is set in dwFlags.

VIDEO_STREAM_INIT_PARMS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 261 Windows NT DDK

dwFlags
Contains flags. Can contain one (or none) of the following flags.

Flag Definition
CALLBACK_WINDOW Indicates dwCallback contains a window handle.
CALLBACK_FUNCTION Indicates dwCallback contains a callback function

address.

hVideo
Contains a handle to a video channel.

Comments
The dwCallback, dwCallbackInst, and dwFlags members contain information needed by the
driver to deliver callback messages. For more information, see Notifying Clients from Video
Capture Drivers.

VIDEOCONFIGPARMS
typedef struct {
LPDWORD lpdwReturn;
LPVOID lpData1;
DWORD dwSize1;
LPVOID lpData2;
DWORD dwSize2;
} VIDEOCONFIGPARMS;
The VIDEOCONFIGPARMS structure is used to send or return message-specific configuration
parameters. User-mode video capture drivers receive this structure along with DVM_FORMAT,
DVM_PALETTE, and DVM_PALETTERGB555 messages. The structure is defined in msviddrv.h.

Members
lpdwReturn

Pointer to a DWORD to be filled with a message-specific return value.
lpData1

Pointer to message-specific data.
dwSize1

Size, in bytes, of data passed in lpData1.
lpData2

Pointer to message-specific data.
dwSize2

Size, in bytes, of data passed in lpData2.

Comments
For message-specific information about the contents of the lpdwReturn, lpData1, and pData2
members, see the descriptions of DVM_FORMAT, DVM_PALETTE, and DVM_PALETTERGB555.

VIDEOHDR
typedef struct {
LPBYTE lpData;
DWORD dwBufferLength;
DWORD dwBytesUsed;
DWORD dwTimeCaptured;
DWORD dwUser;
DWORD dwFlags;
DWORD dwReserved[4];
} VIDEOHDR;
The VIDEOHDR structure describes a client-supplied buffer for receiving video capture data.
Drivers receive this structure along with DVM_STREAM_ADDBUFFER,

VIDEOHDR
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 262 Windows NT DDK

DVM_STREAM_PREPAREHEADER, and DVM_STREAM_UNPREPAREHEADER messages.
The structure is defined in msvideo.h.

Members
lpData

Pointer to a buffer.
dwBufferLength

Length of the buffer.
dwBytesUsed

Number of bytes used in the buffer.
dwTimeCaptured

Capture time for the frame, in milliseconds, relative to the capture time of the stream's first
frame.

dwUser
Contains 32 bits of client-specified data.

dwFlags
Contains flags. The following flags are defined.

Flag Definition
VHDR_DONE Set by the device driver to indicate it is finished with the

data buffer and is returning the buffer to the client.
VHDR_PREPARED Indicates whether or not the buffer has been prepared for

use. See DVM_STREAM_PREPAREHEADER.
VHDR_INQUEUE Set by the driver to indicate the buffer is in the driver's

buffer queue.
VHDR_KEYFRAME Set by the device driver to indicate a key frame.

dwReserved[4]
Reserved for use by the device driver. Typically, drivers use this area to maintain a buffer
queue.

Comments
The client supplies values for the lpData, dwBufferLength, and dwUser members. The driver
fills in the dwBytesUsed, dwTimeCaptured, and dwFlags members. Drivers using VCUser.lib
do not need to maintain the dwFlags member, because code within VCUser.lib handles the flags.

Functions, VCUser.lib
This section describes the functions provided to user-mode video capture drivers that are using
VCUser.lib. The functions are listed in alphabetic order.

VC_Capture
BOOL

VC_Capture(
 VCUSER_HANDLE vh,
 BOOL bAcquire
);

The VC_Capture function requests the kernel-mode driver to enable or disable acquisition of
video capture data into the frame buffer.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.
bAcquire

Set to TRUE to enable capture, or FALSE to disable capture.

VC_Capture
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 263 Windows NT DDK

Return Value
Returns TRUE if successful. Otherwise returns FALSE.

Comments
User-mode video capture drivers should call VC_Capture with bAcquire set to TRUE when
processing a DVM_STREAM_INIT command for the VIDEO_EXTERNALIN channel. They should
call the function with bAcquire set to FALSE when processing a DVM_STREAM_FINI command
for the VIDEO_EXTERNALIN channel.

Disabling capture when overlay is enabled has the effect of freezing the captured video.

The VC_Capture function calls DeviceIoControl (described in the Win32 SDK) to send either an
IOCTL_VIDC_CAPTURE_ON or an IOCTL_VIDC_CAPTURE_OFF control code to the specified
kernel-mode driver. When a kernel-mode driver using VCKernel.lib receives one of these control
codes, its CaptureFunc function is called.

VC_CloseDevice
VOID

VC_CloseDevice(
VCUSER_HANDLE vh
);

The VC_CloseDevice function closes a video capture device that was previously opened with
VC_OpenDevice.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.

Return Value
None.

Comments
The VC_CloseDevice function closes the kernel-mode driver handle that was obtained with
VC_OpenDevice. It also removes the worker thread and event handles that VCUser.lib creates
for internal use when the driver calls VC_OpenDevice.

A user-mode driver should call VC_CloseDevice when it receives a DRV_CLOSE message.
Typically, the driver receives multiple DRV_CLOSE messages, because DRV_CLOSE is sent
each time the client closes one of the video channels (VIDEO_EXTERNALIN, VIDEO_IN,
VIDEO_OUT, or VIDEO_EXTERNALOUT). The driver only needs to call VC_CloseDevice for the
client's last DRV_CLOSE message, as illustrated by the sample video capture drivers.

VC_CloseProfileAccess
VOID

VC_CloseProfileAccess(
 PVC_PROFILE_INFO pProfile
);

The VC_CloseProfileAccess function removes registry access information obtained from
VC_OpenProfileAccess.

Parameters
pProfile

Address of the VC_PROFILE_INFO structure returned by VC_OpenProfileAccess.

Return Value
None.

VC_CloseProfileAccess
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 264 Windows NT DDK

Comments
The VC_CloseProfileAccess function closes the connection to the Service Control Manager that
was created by a previous call to VC_ConfigAccess.

After calling VC_CloseProfileAccess, a user-mode driver cannot access its kernel-mode driver
or the registry.

A user-mode driver should call VC_CloseProfileAccess when its DriverProc function receives a
DRV_FREE message.

See Also
VC_OpenProfileAccess

VC_ConfigAccess
BOOL

VC_ConfigAccess(
 PVC_PROFILE_INFO pProfile
);

The VC_ConfigAccess function creates a connection to the Service Control Manager, if the
client has Administrator privilege.

Parameters
pProfile

Address of the VC_PROFILE_INFO structure returned by VC_OpenProfileAccess.

Return Value
Returns TRUE if the client has Administrators privilege. Otherwise returns FALSE.

Comments
A user-mode driver must call VC_ConfigAccess when it receives a DRV_QUERYCONFIGURE
message. Because a user must have Administrator privilege in order to perform driver
configuration operations, the driver should provide a failure return value for DriverProc in
response to DRV_QUERYCONFIGURE, if VC_ConfigAccess returns FALSE. This notifies the
caller that configuration operations cannot be performed.

VC_ConfigDisplay
BOOL

VC_ConfigDisplay(
 VCUSER_HANDLE vh,
 PCONFIG_INFO pConfig
);

The VC_ConfigDisplay function sends display-configuration information to a kernel-mode video
capture driver.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.
pConfig

Pointer to a CONFIG_INFO structure.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
User-mode video capture drivers use the VC_ConfigDisplay function to send channel
configuration parameters to the kernel-mode driver. Typically, this function is used to send video

VC_ConfigDisplay
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 265 Windows NT DDK

overlay parameters associated with the VIDEO_EXTERNALOUT channel.

This VC_ConfigDisplay function calls DeviceIoControl (described in the Win32 SDK) to send an
IOCTL_VIDC_CONFIG_DISPLAY control code to the specified kernel-mode driver. When a
kernel-mode driver using VCKernel.lib receives this control code, its ConfigDisplayFunc function
is called.

For more information about channel configuration, see Configuring Video Channels.

VC_ConfigFormat
BOOL

VC_ConfigFormat(
VCUSER_HANDLE vh,
PCONFIG_INFO pConfig
);

The VC_ConfigFormat function sends format-configuration information to a kernel-mode video
capture driver.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.
pConfig

Pointer to a CONFIG_INFO structure.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
User-mode video capture drivers use the VC_ConfigFormat function to send data format
parameters to the kernel-mode driver. Typically, a driver calls VC_ConfigFormat when its
DriverProc function receives a DVM_FORMAT message, or after it displays a dialog box to allow
the user to change the format.

The VC_ConfigFormat function calls DeviceIoControl (described in the Win32 SDK) to send an
IOCTL_VIDC_CONFIG_FORMAT control code to the specified kernel-mode driver. When a
kernel-mode driver using VCKernel.lib receives this control code, its ConfigFormatFunc function
is called.

For more information about changing the video format, see Configuring Video Channels and
Setting the Video Data Format.

VC_ConfigSource
BOOL

VC_ConfigSource(
VCUSER_HANDLE vh,
PCONFIG_INFO pConfig
);

The VC_ConfigSource function sends source-configuration information to a kernel-mode video
capture driver.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.
pConfig

Pointer to a CONFIG_INFO structure.

Return Value

VC_ConfigSource
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 266 Windows NT DDK

Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
User-mode video capture drivers use the VC_ConfigSource function to send channel
configuration parameters to the kernel-mode driver. Typically, this function is used to send video
source parameters associated with the VIDEO_EXTERNALIN channel.

The VC_ConfigSource function calls DeviceIoControl (described in the Win32 SDK) to send an
IOCTL_VIDC_CONFIG_SOURCE control code to the specified kernel-mode driver. When a
kernel-mode driver using VCKernel.lib receives this control code, its ConfigSourceFunc function
is called.

For more information about channel configuration, see Configuring Video Channels.

VC_DrawFrame
BOOL

VC_DrawFrame(
 VCUSER_HANDLE vh,
 PDRAWBUFFER pDraw
);

The VC_DrawFrame function requests a kernel-mode video capture driver to place video data
into the frame buffer so that it can be displayed.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.
pDraw

Pointer to a DRAWBUFFER structure.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
The driver supplies a DRAWBUFFER structure describing the frame to be drawn.

Drivers can call VC_GetOverlayMode to determine if the hardware supports playback of
compressed data formats.

The VC_DrawFrame function calls DeviceIoControl (described in the Win32 SDK) to send an
IOCTL_VIDC_DRAW_FRAME control code to the specified kernel-mode driver. When a
kernel-mode driver using VCKernel.lib receives this control code, its DrawFrameFunc function is
called.

VC_Frame
BOOL

VC_Frame(
VCUSER_HANDLE vh,
LPVIDEOHDR lpvh
);

The VC_Frame function requests a kernel-mode video capture driver to capture and return a
single frame from the VIDEO_IN channel.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.
lpvh

VC_Frame
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 267 Windows NT DDK

Pointer to a VIDEOHDR structure.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
The VC_Frame function returns a single frame by opening a capture stream and supplying only a
single data buffer, thereby stopping the stream after one transfer. The stream is then closed. The
client is not aware of this stream and, from the client's point of view, the operation appears to
behave synchronously.

The driver supplies a VIDEOHDR structure describing an empty buffer. The kernel-mode driver
fills the buffer with the contents of the frame buffer.

For more information about video capture data transfers, see Transferring Video Capture Data.

VC_GetKeyColour
DWORD

VC_GetKeyColour(
VCUSER_HANDLE vh
);

The VC_GetKeyColour function requests a kernel-mode video capture driver to return the
device's current key color.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.

Return Value
If the hardware supports a key color, the function returns the key color. Otherwise the function
returns zero. See the following Comments section.

Comments
Before calling VC_GetKeyColour, the driver should call VC_GetOverlayMode and test the
VCO_KEYCOLOUR_RGB flag to determine if, based on the current data format, the kernel-mode
driver has stored the key color as an RGB color or as a palette index number. The
VC_GetKeyColour function's return value is either an RGBQUAD type or a palette index
number, based on the VCO_KEYCOLOUR_RGB flag.

The VC_GetKeyColour function calls DeviceIoControl (described in the Win32 SDK) to send an
IOCTL_VIDC_GET_KEY_COLOUR control code to the specified kernel-mode driver. When a
kernel-mode driver using VCKernel.lib receives this control code, its GetKeyColourFunc function
is called.

See Also
VC_SetKeyColourPalIdx, VC_SetKeyColourRGB

VC_GetOverlayMode
ULONG

VC_GetOverlayMode(
 VCUSER_HANDLE vh
);

The VC_GetOverlayMode function requests a kernel-mode video capture driver to return the
device's overlay, color keying, and decompression capabilities.

Parameters
vh

VC_GetOverlayMode
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 268 Windows NT DDK

Handle to the kernel-mode driver, obtained from VC_OpenDevice.

Return Value
Returns an unsigned long value containing flags that indicate the types of overlay capabilities
supported by the hardware. Zero indicates that overlay is not supported. A nonzero return value
can contain the following flags.

Flag Definition
VCO_KEYCOLOUR Indicates the device supports a key color.
VCO_KEYCOLOUR_FIXED Indicates the key color cannot be modified.
VCO_KEYCOLOUR_RGB If set, indicates the key color must be specified as an

RGB color. If clear, indicates the key color must be
specified as a palette index number.

VCO_SIMPLE_RECT Indicates the device supports a single rectangular
overlay region.

VCO_COMPLEX_REGION Indicates the device supports a complex
(multi-rectangle) overlay region.

VCO_CAN_DRAW_Y411 Indicates the device can display bitmaps that contain
YUV 4:1:1-formatted data.

VCO_CAN_DRAW_S422 Indicates the device can display bitmaps that contain
YUV 4:2:2-formatted data.

Comments
The VCO_CAN_DRAW_Y411 and VCO_CAN_DRAW_S422 flags indicate the types of
compressed formats the hardware supports for playback by means of the VC_DrawFrame
function.

The VC_GetOverlayMode function calls DeviceIoControl (described in the Win32 SDK) to send
an IOCTL_VIDC_OVERLAY_MODE control code to the specified kernel-mode driver. When a
kernel-mode driver using VCKernel.lib receives this control code, its GetOverlayModeFunc
function is called.

VC_GetStreamError
ULONG

VC_GetStreamError(
 VCUSER_HANDLE vh
);

The VC_GetStreamError function returns the count of frames that have been dropped from the
currently active capture stream since the last time VC_GetStreamError was called.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.

Return Value
Returns the number of dropped frames.

Comments
When transferring streams of captured data, a kernel-mode driver drops a frame if a hardware
interrupt indicates the frame buffer is full, but the queue of client-supplied buffers is empty. Code
within VCUser.lib keeps track of dropped frames. You do not have to provide any code to handle
dropped frames.

VC_GetStreamPos
BOOL

VC_GetStreamPos
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 269 Windows NT DDK

VC_GetStreamPos(
 VCUSER_HANDLE vh,
 LPMMTIME pTime
);

The VC_GetStreamPos function requests a kernel-mode video capture driver to return the
current position within the capture stream.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.
pTime

Pointer to an MMTIME structure. (The MMTIME structure is described in the Win32 SDK.)

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
The VC_GetStreamPos function returns the time, in milliseconds, since VC_StreamStart was
called, by filling in the MMTIME structure.

The VC_GetStreamPos function calls DeviceIoControl (described in the Win32 SDK) to send an
IOCTL_VIDC_GET_POSITION control code to the specified kernel-mode driver. When a
kernel-mode driver using VCKernel.lib receives this control code, its StreamGetPositionFunc
function is called.

VC_InstallDriver
LRESULT

VC_InstallDriver(
 PVC_PROFILE_INFO pProfile,
 PPROFILE_CALLBACK pCallback,
 PVOID pContext
);

The VC_InstallDriver function installs a kernel-mode driver and allows modification of
configuration parameters.

Parameters
pProfile

Address of a VC_PROFILE_INFO structure returned by VC_OpenProfileAccess, containing
the kernel-mode driver's name.

pCallback
Pointer to a driver-supplied function that is called before the kernel-mode driver is reloaded.
Can be NULL.
The function should return TRUE if the installation should continue, or FALSE if the installation
should be terminated. It uses the following prototype definition:
BOOL pCallback (PVOID pContext);

pContext
Pointer to a driver-defined structure that is passed as input to the function pointed to by
pCallback. Can be NULL.

Return Value
Returns one the following values.

Value Definition
DRVCNF_OK The driver is correctly loaded and started. System restart is

not required.
DRVCNF_CANCEL An error occurred.

VC_InstallDriver
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 270 Windows NT DDK

Comments
Under Windows NT, kernel-mode drivers are considered to be services under the control of the
Service Control Manager. The VC_InstallDriver function establishes a kernel-mode driver as a
service by performing the following operations, in order:

1. Calling OpenSCManager to create a connection to the local Service Control Manager.
OpenSCManager is called with a desired access type of SC_MANAGER_ALL_ACCESS,
which requires Administrators privilege. (OpenSCManager is described in the Win32 SDK.)

2. Calling CreateService to create a kernel-mode driver service and obtain a service handle. The
function sets the service's start type to SERVICE_DEMAND_START, so it will not
automatically reload when the system is restarted. (CreateService is described in the Win32
SDK.)

3. Unloading the kernel-mode driver, if it is loaded.
4. Calling the driver-supplied function specified by the pCallback parameter. Generally, drivers

use this function to modify configuration parameters in the registry, using VC_WriteProfile.
5. Reloading and restarting the kernel-mode driver, setting its start type to

SERVICE_SYSTEM_START, so it will automatically reload and restart when the system is
restarted.

A result of calling CreateService is the creation of a driver subkey under the \Services registry
key. The path to the subkey is
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName, where
DriverName is the driver name specified as input to VC_OpenProfileAccess.

Typically, a user-mode video capture driver calls VC_InstallDriver when its DriverProc function
receives a DRV_CONFIGURE message.

VC_OpenDevice
VCUSER_HANDLE

VC_OpenDevice(
 PWCHAR pDeviceName,
 int DeviceIndex
);

The VC_OpenDevice function opens a specified video capture device.

Parameters
pDeviceName

Pointer to a UNICODE string containing the name of the device to open. If NULL, DeviceIndex
specifies the device.

DeviceIndex
Index number used to identify the device, if pDriverName is NULL. If pDriverName points to a
string, DeviceIndex must be zero (see the following Comments section).

Return Value
Returns a handle to the kernel-mode driver, if the operation succeeds. Otherwise returns NULL.

Comments
A user-mode driver should call VC_OpenDevice when it receives a DRV_OPEN message.
Typically, the driver receives multiple DRV_OPEN messages, because DRV_OPEN is sent each
time the client opens one of the video channels (VIDEO_EXTERNALIN, VIDEO_IN, VIDEO_OUT,
or VIDEO_EXTERNALOUT). The driver only needs to call VC_OpenDevice for the client's first
DRV_OPEN message, as illustrated by the sample video capture drivers.

If pDeviceName points to a string, that string is used as the device name. Because the current
implementation does not allow a single kernel-mode video capture driver to support more than
one device, a device number is not appended to this string. The DeviceIndex value must be zero.

VC_OpenDevice
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 271 Windows NT DDK

The pDriverName value must be a pointer to the same string that was specified as input to
VC_OpenProfileAccess.

If pDeviceName is NULL, then the DeviceIndex parameter specifies an index value. This value is
appended to the device name "vidcap", which is defined by DD_VIDCAP_DEVICE_NAME_U in
ntddvidc.h. For kernel-mode drivers using VCKernel.lib, this name is used by VC_Init when
creating a device object. Thus, specifying a DeviceIndex value allows a user-mode driver to
attempt to open a video capture device without specifying a particular device name, such as
"bravado". See the sample msyuv.dll driver for an example of using the DeviceIndex parameter.
(For more information about device objects, see the Kernel-Mode Drivers Design Guide.)

The VC_OpenDevice function calls CreateFile, described in the Win32 SDK, to open the device.
As a result of this call, the kernel-mode driver receives an IRP_MJ_CREATE function code.
When a kernel-mode driver using VCKernel.lib receives this function code, its DeviceOpenFunc
function is called.

VC_OpenProfileAccess
PVC_PROFILE_INFO

VC_OpenProfileAccess(
 PWCHAR DriverName
);

The VC_OpenProfileAccess function creates a VC_PROFILE structure that is used for storing
information needed to access the Service Control Manager and the registry.

Parameters
DriverName

Pointer to a UNICODE driver name string.

Return Value
Returns a pointer to a VC_PROFILE_INFO structure, if the operation succeeds. Otherwise returns
NULL. (This structure is private to VCUser.lib.)

Comments
A user-mode driver should call VC_OpenProfileAccess when its DriverProc function receives a
DRV_LOAD message.

The string specified for DriverName should be the name of the kernel-mode driver file, without an
extension. For example, the string used for the sample Bravado driver is "bravado". This name is
written into the registry by VC_InstallDriver.

See Also
VC_CloseProfileAccess

VC_Overlay
BOOL

VC_Overlay(
 VCUSER_HANDLE vh,
 BOOL bOverlay
);

The VC_Overlay function requests a kernel-mode video capture driver to enable or disable the
hardware's overlay capabilities, using the current rectangle and key color settings.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.
bOverlay

VC_Overlay
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 272 Windows NT DDK

Set TRUE to enable overlay, or FALSE to disable overlay.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
User-mode video capture drivers using VCUser.lib should call the VC_Overlay function with
bOverlay set to TRUE when processing a DVM_STREAM_INIT command for the
VIDEO_EXTERNALOUT channel. They should call the function with bOverlay set to FALSE when
processing a DVM_STREAM_FINI command for the VIDEO_EXTERNALOUT channel.

The VC_Overlay function calls DeviceIoControl (described in the Win32 SDK) to send either an
IOCTL_VIDC_OVERLAY_ON or an IOCTL_VIDC_OVERLAY_OFF control code to the specified
kernel-mode driver. When a kernel-mode driver using VCKernel.lib receives one of these control
codes, its OverlayFunc function is called.

See Also
VC_SetOverlayRect

VC_ReadProfile
DWORD

VC_ReadProfile(
 PVC_PROFILE_INFO pProfile,
 PWCHAR ValueName,
 DWORD dwDefault
);

The VC_ReadProfile function reads the DWORD value associated with the specified value
name, under the driver's \Parameters registry key.

Parameters
pProfile

Address of the VC_PROFILE_INFO structure returned by VC_OpenProfileAccess.
ValueName

Pointer to a UNICODE string identifying the name of a registry value.
dwDefault

Specifies a default value that is returned if an error occurs locating or reading the requested
value.

Return Value
Returns the value assigned to the ValueName string, if the operation succeeds. If the ValueName
string does not exist in the registry, cannot be accessed, or is not a REG_DWORD type, the
function returns the value specified by dwDefault.

Comments
The value name and value are read from the registry path
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters,
where DriverName is the driver name specified as input to VC_OpenProfileAccess.

To store values under a driver's \Parameters registry key, call VC_WriteProfile.

Note: A function named VC_ReadProfile is also provided by VCKernel.lib for kernel-mode video
capture drivers. To see that function's description, click here.

See Also
VC_ReadProfileString, VC_ReadProfileUser, VC_WriteProfile, VC_WriteProfileUser

VC_ReadProfileString
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 273 Windows NT DDK

BOOL
VC_ReadProfileString(
 PVC_PROFILE_INFO pProfile,
 PWCHAR ValueName,
 PWCHAR ValueString,
 DWORD ValueLength
);

The VC_ReadProfileString function reads the string value associated with the specified value
name, under the driver's \Parameters registry key.

Parameters
pProfile

Address of the VC_PROFILE_INFO structure returned by VC_OpenProfileAccess.
ValueName

Pointer to a UNICODE string identifying the name of a registry value.
ValueString

Pointer to a buffer to receive the requested string value.
ValueLength

Length, in bytes, of the buffer pointed to by ValueString.

Return Value
Returns TRUE if the operation succeeds. If the ValueName string does not exist in the registry,
cannot be accessed, is not a REG_SZ (string) type, or if the specified buffer is not large enough
to hold the returned string, the function returns FALSE.

Comments
If the operation succeeds, the VC_ReadProfileString function copies the string value into the
specified buffer.

The value name and value are read from the registry path
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters,
where DriverName is the driver name specified as input to VC_OpenProfileAccess.

See Also
VC_ReadProfile, VC_ReadProfileUser, VC_WriteProfile, VC_WriteProfileUser

VC_ReadProfileUser
DWORD

VC_ReadProfileUser(
 PVC_PROFILE_INFO pProfile,
 PWCHAR ValueName,
 DWORD dwDefault
);

The VC_ReadProfileUser function reads the DWORD value associated with the specified value
name, under the user's profile information in the registry.

Parameters
pProfile

Address of the VC_PROFILE_INFO structure returned by VC_OpenProfileAccess.
ValueName

Pointer to a UNICODE string identifying the name of a registry value.
dwDefault

Specifies a default value that is returned if an error occurs locating or reading the requested
value.

VC_ReadProfileUser
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 274 Windows NT DDK

Return Value
Returns the value assigned to the ValueName string, if the operation succeeds. If the ValueName
string does not exist in the registry, cannot be accessed, or is not a REG_DWORD type, the
function returns the value specified by dwDefault.

Comments
The value name and value are read from the registry path HKEY_CURRENT_USER \Software
\Microsoft \Multimedia \Video Capture \DriverName, where DriverName is the driver name
specified as input to VC_OpenProfileAccess.

To store values under this registry key, call VC_WriteProfileUser.

See Also
VC_ReadProfile, VC_ReadProfileString, VC_WriteProfile, VC_WriteProfileUser

VC_RemoveDriver
LRESULT

VC_RemoveDriver(
 PVC_PROFILE_INFO pProfile
);

The VC_RemoveDriver function unloads a kernel-mode video capture driver and marks the
kernel-mode driver service for deletion.

Parameters
pProfile

Address of the VC_PROFILE_INFO structure returned by VC_OpenProfileAccess.

Return Value
Returns one the following error values.

Value Definition
DRVCNF_OK Indicates the driver service has been marked for deletion.
DRVCNF_CANCEL Indicates an error occurred.

Comments
The VC_RemoveDriver function performs the following operations, in order:

1. Unloads the kernel-mode driver, if it is loaded.
2. Sets the kernel-mode driver service's start type to SERVICE_DEMAND_START, so it will not

automatically reload when the system is restarted. (For details, see ChangeServiceConfig in
the Win32 SDK.)

3. Calls DeleteService, described in the Win32 SDK, to mark the kernel-mode driver service for
deletion.

A user-mode driver should call VC_RemoveDriver when its DriverProc function receives a
DRV_REMOVE message. Before calling VC_RemoveDriver, the driver should call
VC_ConfigAccess to determine if the client has Administrators privilege.

The profile information handle specified by pProfile remains open after this function removes the
registry entry. Use VC_CloseProfileAccess to close the profile information handle after calling
VC_RemoveDriver.

VC_SetKeyColourPalIdx
BOOL

VC_SetKeyColourPalIdx(
 VCUSER_HANDLE vh,

VC_SetKeyColourPalIdx
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 275 Windows NT DDK

 WORD PaletteIndex
);

The VC_SetKeyColourPalIdx function requests a kernel-mode video capture driver to set the
overlay destination image's key color to a specified palette index.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.
PaletteIndex

Index into the current color palette. This value should be one that can be passed to the
PALETTEINDEX macro to obtain a COLORREF value. The PALETTEINDEX macro and the
COLORREF type are described in the Win32 SDK.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
Before setting the key color, the driver should call VC_GetOverlayMode and test the
VCO_KEYCOLOUR_FIXED flag to determine if the key color can be set. If the color can be set,
the driver should test the VCO_KEYCOLOUR_RGB flag to determine if, based on the current
data format, the kernel-mode driver stores the key color as an RGB color or as a palette index
number. If the key color is stored as an RGB color, the driver should call VC_SetKeyColourRGB
to set it. If the key color is stored as a palette index, the driver should call
VC_SetKeyColourPalIdx to set it.

The VC_SetKeyColourPalIdx function calls DeviceIoControl (described in the Win32 SDK) to
send an IOCTL_VIDC_SET_KEY_PALIDX control code to the specified kernel-mode driver.
When a kernel-mode driver using VCKernel.lib receives this control code, its SetKeyPalIdxFunc
function is called.

See Also
VC_GetKeyColour, VC_SetKeyColourRGB

VC_SetKeyColourRGB
BOOL

VC_SetKeyColourRGB(
 VCUSER_HANDLE vh,
 PRGBQUAD pRGB
);

The VC_SetKeyColourRGB function requests a kernel-mode video capture driver to set the
overlay destination image's key color to a specified RGB color.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.
pRGB

Pointer to an RGBQUAD structure containing an RGB color specification. (The RGBQUAD
structure is described in the Win32 SDK.)

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
Before setting the key color, the driver should call VC_GetOverlayMode and test the
VCO_KEYCOLOUR_FIXED flag to determine if the key color can be set. If the color can be set,
the driver should test the VCO_KEYCOLOUR_RGB flag to determine if, based on the current

VC_SetKeyColourRGB
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 276 Windows NT DDK

data format, the kernel-mode driver stores the key color as an RGB color or as a palette index
number. If the key color is stored as an RGB color, the driver should call VC_SetKeyColourRGB
to set it. If the key color is stored as a palette index, the driver should call
VC_SetKeyColourPalIdx to set it.

The VC_SetKeyColourRGB function calls DeviceIoControl (described in the Win32 SDK) to
send an IOCTL_VIDC_SET_KEY_RGB control code to the specified kernel-mode driver. When a
kernel-mode driver using VCKernel.lib receives this control code, its SetKeyRGBFunc function is
called.

See Also
VC_GetKeyColour, VC_SetKeyColourPalIdx

VC_SetOverlayOffset
BOOL

VC_SetOverlayOffset(
 VCUSER_HANDLE vh,
 PRECT prc
);

The VC_SetOverlayOffset function requests a kernel-mode video capture driver to set the
overlay offset rectangle. This rectangle defines which portion of the frame buffer appears in the
overlay window.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.
prc

Pointer to a RECT structure containing screen coordinates that describe the offset rectangle.
(The RECT structure is described in the Win32 SDK.)

Return Value
Returns TRUE if the operation succeeds. Otherwise, returns FALSE.

Comments
User-mode drivers using VCUser.lib typically call VC_SetOverlayOffset when a client sends the
DVM_SRC_RECT message for the VIDEO_EXTERNALOUT channel. If the source image is
larger than the overlay window, the client typically provides scroll bars to allow the user to pan
across the source image, and sends DVM_SRC_RECT messages when the user scrolls the view.

The prc parameter specifies the portion of the frame buffer to send to the overlay window. The
kernel-mode driver should display the top left corner of the specified offset rectangle in the top
left corner of the overlay window.

The VC_SetOverlayOffset function calls DeviceIoControl (described in the Win32 SDK) to send
an IOCTL_VIDC_OVERLAY_OFFSET control code to the specified kernel-mode driver. When a
kernel-mode driver using VCKernel.lib receives this control code, its SetOverlayOffsetFunc
function is called.

VC_SetOverlayRect
BOOL

VC_SetOverlayRect(
 VCUSER_HANDLE vh,
 POVERLAY_RECTS pOR
);

The VC_SetOverlayRect function requests a kernel-mode video capture driver to set the overlay
region of an output display.

VC_SetOverlayRect
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 277 Windows NT DDK

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.
pOR

Pointer to an OVERLAY_RECTS structure describing one or more overlay rectangles, using
screen coordinates.

Return Value
Returns TRUE if the operation succeeds. Otherwise, returns FALSE.

Comments
User-mode drivers using VCUser.lib typically call the VC_SetOverlayRect function when a client
sends the DVM_DST_RECT message for the VIDEO_EXTERNALOUT channel. The function
specifies the portion of the display device to use as an overlay area.

If the OVERLAY_RECTS structure contains a single rectangle, the rectangle defines the overlay
region. If the structure contains more than one rectangle, the first rectangle defines the bounding
rectangle for the overlay region, and additional rectangles represent parts of the overlay region.
All rectangles are specified using screen coordinates.

The driver should specify complex (multiple) rectangles only if the kernel-mode driver returns the
VCO_COMPLEX_RECT flag when the VC_GetOverlayMode function is called. The sample
video capture drivers do not accept complex rectangle specifications.

The VC_SetOverlayRect function calls DeviceIoControl (described in the Win32 SDK) to send
an IOCTL_VIDC_OVERLAY_RECTS control code to the specified kernel-mode driver. When a
kernel-mode driver using VCKernel.lib receives this control code, its SetOverlayRectsFunc
function is called.

VC_StreamAddBuffer
BOOL

VC_StreamAddBuffer(
 VCUSER_HANDLE vh,
 LPVIDEOHDR lpvh
);

The VC_StreamAddBuffer function adds a buffer to a video capture driver's queue of buffers
used to receive video capture input frames.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.
lpvh

Pointer to a VIDEOHDR structure defining the buffer to be queued.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
A user-mode video capture driver using VCUser.lib should call VC_StreamAddBuffer when its
DriverProc function receives a DVM_STREAM_ADDBUFFER message.

If the driver has not called VC_StreamStart to start reading frames, the specified buffer is added
to the user-mode driver's buffer queue. If VC_StreamStart has been called, the
VC_StreamAddBuffer function tries to send the buffer to the kernel-mode driver. To limit the
amount of memory the kernel-mode driver must lock, a maximum of two buffers are queued to
the kernel-mode driver at one time. Any additional buffers are queued in the user-mode driver
until the kernel-mode driver's queue contains less than two buffers. The VC_StreamAddBuffer
function always returns after the buffer is queued, without waiting for captured data to be placed

VC_StreamAddBuffer
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 278 Windows NT DDK

in the buffer.

To send a buffer to the kernel-mode driver, the VC_StreamAddBuffer function calls
DeviceIoControl (described in the Win32 SDK), specifying an IOCTL_VIDC_ADD_BUFFER
control code. If the kernel-mode driver is using VCKernel.lib, and if the specified buffer length is
smaller than the image size value specified with VC_SetImageSize, the buffer is not queued. If
the buffer size is acceptable, VCKernel.lib places the buffer's I/O request packet (IRP) in a queue,
where it stays until needed to receive a captured frame. (For more information about IRPs, see
the Kernel-Mode Drivers Design Guide.)

If the kernel-mode driver fails to lock the buffer in the client's address space (because the buffer
is too large for the system's memory resources), then VCUser.lib sends
IOCTL_VIDC_CAP_TO_SYSBUF, IOCTL_VIDC_PARTIAL_CAPTURE, and
IOCTL_VIDC_FREE_SYSBUF, control codes to request the kernel-mode driver to copy frame
buffer data into a system-allocated buffer. The data is then copied to the client's buffers as
smaller, partial frame sections.

VC_StreamFini
BOOL

VC_StreamFini(
 VCUSER_HANDLE vh
);

The VC_StreamFini ends a streaming operation that was initiated by calling VC_StreamInit.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
A user-mode video capture driver using VCUser.lib should call VC_StreamFini when its
DriverProc function receives a DVM_STREAM_FINI message.

A driver should call the VC_StreamFini function only after it has called VC_StreamStop. The
function removes the thread that was created by VC_StreamInit.

The VC_StreamFini function calls DeviceIoControl (described in the Win32 SDK) to send an
IOCTL_VIDC_STREAM_RESET control code, followed by an IOCTL_VIDC_STREAM_FINI
control code, to the specified kernel-mode driver. When a kernel-mode driver using VCKernel.lib
receives the VIDC_STREAM_FINI control code, its StreamFiniFunc function is called.

VC_StreamInit
BOOL

VC_StreamInit(
 VCUSER_HANDLE vh,
 PVCCALLBACK pCallback,
 ULONG FrameRate
);

The VC_StreamInit function initializes a video capture stream.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.
pCallback

Pointer to a client notification target (callback function or window handle) received as input with

VC_StreamInit
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 279 Windows NT DDK

a DVM_STREAM_INIT message.
FrameRate

Capture rate (microseconds per frame) received as input with a DVM_STREAM_INIT message.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
A user-mode video capture driver using VCUser.lib should call VC_StreamInit when its
DriverProc function receives a DVM_STREAM_INIT message.

This function performs the following operations:

• Stores the pCallback value for use when notifying the client. For more information about
notifying clients, see Notifying Clients from Video Capture Drivers.

• Creates a separate user-mode worker thread to handle stream operations.

The VC_StreamInit function calls DeviceIoControl (described in the Win32 SDK) to send an
IOCTL_VIDC_STREAM_INIT control code to the specified kernel-mode driver. When a
kernel-mode driver using VCKernel.lib receives this control code, its StreamInitFunc function is
called. The FrameRate value is passed to the kernel-mode driver along with the
IOCTL_VIDC_STREAM_INIT message.

When the initialization operation is complete, the worker thread sends the client an
MM_DRVM_OPEN callback message.

VC_StreamReset
BOOL

VC_StreamReset(
 VCUSER_HANDLE vh
);

The VC_StreamReset function stops the capture stream, if VC_StreamStop has not been called,
and then cancels all queued buffers.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
A user-mode video capture driver using VCUser.lib should call VC_StreamReset when its
DriverProc function receives a DVM_STREAM_RESET message.

The VC_StreamReset function calls DeviceIoControl (described in the Win32 SDK) to send an
IOCTL_VIDC_STREAM_RESET control code to the specified kernel-mode driver. When a
kernel-mode driver using VCKernel.lib receives this control code, its StreamStopFunc function is
called if the capture stream has not been previously stopped. Then VCKernel.lib returns unused
buffers to the user-mode driver. Code in VCUser.lib marks all queued buffers as done by setting
VHDR_DONE in the dwFlags member of each buffer's VIDEOHDR structure, and sends an
MM_DRVM_DATA callback message to the client for each buffer.

See Also
VC_StreamStop

VC_StreamStart

VC_StreamStart
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 280 Windows NT DDK

BOOL
VC_StreamStart(
 VCUSER_HANDLE vh
);

The VC_StreamStart function starts a capture stream.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
A user-mode video capture driver using VCUser.lib should call VC_StreamStart when its
DriverProc function receives a DVM_STREAM_START message.

A driver cannot call VC_StreamStart unless it has previously called VC_StreamInit.

If the driver has previously called VC_StreamAddBuffer to add buffers to its local queue, the
VC_StreamStart function calls DeviceIoControl (described in the Win32 SDK), specifying an
IOCTL_VIDC_ADD_BUFFER control code, to send up to two buffers to the kernel-mode driver.

The VC_StreamStart function then calls DeviceIoControl to send an
IOCTL_VIDC_STREAM_START control code to the specified kernel-mode driver. When a
kernel-mode driver using VCKernel.lib receives this control code, its StreamStartFunc function is
called to start the capturing of input data.

Each time the kernel-mode driver fills a buffer and returns it to the user-mode driver, code in
VCUser.lib sets VHDR_DONE in the dwFlags member of the buffer's VIDEOHDR structure, and
sends an MM_DRVM_DATA callback message to the client.

VC_StreamStop
BOOL

VC_StreamStop(
 VCUSER_HANDLE vh
);

The VC_StreamStop function stops a capture stream.

Parameters
vh

Handle to the kernel-mode driver, obtained from VC_OpenDevice.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
A user-mode video capture driver using VCUser.lib should call VC_StreamStop when its
DriverProc function receives a DVM_STREAM_STOP message.

The VC_StreamStop function then calls DeviceIoControl to send an
IOCTL_VIDC_STREAM_STOP control code to the specified kernel-mode driver. When a
kernel-mode driver using VCKernel.lib receives this control code, its StreamStopFunc function is
called.

After your driver calls VC_StreamStop, kernel-mode driver will fill and return the buffer it is
currently using, but it will not dequeue any more buffers.

VC_WriteProfile

VC_WriteProfile
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 281 Windows NT DDK

BOOL
VC_WriteProfile(
 PVC_PROFILE_INFO pProfile,
 PWCHAR ValueName,
 DWORD Value
);

The VC_WriteProfile function assigns the specified DWORD value to the specified value name,
under the driver's \Parameters registry key.

Parameters
pProfile

Address of the VC_PROFILE_INFO structure returned by VC_OpenProfileAccess.
ValueName

Pointer to a UNICODE string identifying the name of a registry value.
Value

Value to be assigned to the ValueName in the registry.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
The value name and value are written to the registry path
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters,
where DriverName is the driver name specified as input to VC_OpenProfileAccess.

If the \Parameters subkey does not exist, it is created. If the specified value name does not exist
under the \Parameters subkey, it is created.

To read values from a driver's \Parameters registry key, call VC_ReadProfile.

Note: A function named VC_WriteProfile is also provided by VCKernel.lib for kernel-mode video
capture drivers. To see that function's description, click here.

See Also
VC_ReadProfile, VC_ReadProfileString, VC_ReadProfileUser, VC_WriteProfileUser

VC_WriteProfileUser
BOOL

VC_WriteProfileUser(
 PVC_PROFILE_INFO pProfile,
 PWCHAR ValueName,
 DWORD Value
);

The VC_WriteProfileUser function assigns the specified DWORD value to the specified value
name, under the user's profile information in the registry.

Parameters
pProfile

Address of the VC_PROFILE_INFO structure returned by VC_OpenProfileAccess.
ValueName

Pointer to a UNICODE string identifying the name of a registry value.
Value

Value to be assigned to ValueName in the registry.

Return Value

VC_WriteProfileUser
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 282 Windows NT DDK

Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
The value name and value are written to the registry path HKEY_CURRENT_USER \Software
\Microsoft \Multimedia \Video Capture \DriverName, where DriverName is the driver name
specified as input to VC_OpenProfileAccess. If the specified value name does not exist, it is
created.

To read values from this registry key, call VC_ReadProfileUser.

See Also
VC_ReadProfile, VC_ReadProfileString, VC_ReadProfileUser, VC_WriteProfile

Structures, VCUser.lib
This section describes the structures available to user-mode video capture drivers using
VCUser.lib.

CONFIG_INFO
typedef struct _CONFIG_INFO {
ULONG ulSize;
BYTE ulData[1];
} CONFIG_INFO, *PCONFIG_INFO;

The CONFIG_INFO structure is used to describe a customized structure of configuration
information. It is defined in vcstruct.h.

Members
ulSize

Size of the customized structure.
ulData[1]

First data member of the customized structure.

Comments
The CONFIG_INFO structure is a generic structure that allows you to define customized
structures for storing configuration information, and to pass pointers to those structures from your
user-mode driver to your kernel-mode driver with calls to VC_ConfigDisplay,
VC_ConfigFormat, and VC_ConfigSource.

To pass configuration information to your kernel-mode driver, define customized structures, fill
them, and then cast them to the PCONFIG_INFO type when passing them to VC_ConfigDisplay,
VC_ConfigFormat, or VC_ConfigSource. See the sample video capture drivers for examples.

Because the structures are passed from user mode to kernel mode, you cannot include pointers
as structure members.

DRAWBUFFER
typedef struct _DRAWBUFFER {
PUCHAR lpData;
ULONG ulWidth;
ULONG ulHeight;
ULONG Format;
RECT rcSource;
} DRAWBUFFER, *PDRAWBUFFER;

The DRAWBUFFER structure describes the data, frame size, and format for drawing a video
frame. It is defined in vcstruct.h.

DRAWBUFFER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 283 Windows NT DDK

Members
lpData

Pointer to frame data.
ulWidth

Frame width in pixels.
ulHeight

Frame height in pixels.
Format

Video data format.
rcSource

Rectangle describing portion of the frame to be drawn.

Comments
User-mode video capture drivers use the DRAWBUFFER structure when calling VC_DrawFrame.
The ulWidth and ulHeight members describe the entire frame. The rcSource member specifies
the portion of the frame to be drawn.

OVERLAY_RECTS
typedef struct _OVERLAY_RECTS {
 ULONG ulCount; // total number of rects in array
 RECT rcRects[1]; // ulCount rectangles
} OVERLAY_RECTS, *POVERLAY_RECTS;

The OVERLAY_RECTS structure describes the rectangles constituting the active area of an
overlay display. The structure is defined in vcstruct.h.

Members
ulCount

Number of rectangles specified by rcRects.
rcRects[1]

Array of RECT structures containing rectangle descriptions. Rectangles are specified in screen
coordinates. The RECT structure is described in the Win32 SDK.

Comments
User-mode video capture drivers use the OVERLAY_RECTS structure when calling
VC_SetOverlayRect.

VCCALLBACK
typedef struct _VCCALLBACK {
 DWORD dwCallback;
 DWORD dwFlags;
 HDRVR hDevice;
 DWORD dwUser;
} VCCALLBACK, *PVCCALLBACK;

The VCCALLBACK structure contains callback information needed by the VC_StreamInit
function. The structure is defined in vcuser.h.

Members
dwCallback

Contains either the address of a callback function, a window handle, or NULL, based on flags
set in the dwFlags member. The driver should copy the value of the
VIDEO_STREAM_INIT_PARMS structure's dwCallback member into this member.

dwFlags
Contains flags. Can contain one (or none) of the following flags.

VCCALLBACK
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 284 Windows NT DDK

Flag Definition
CALLBACK_WINDOW Indicates dwCallback contains a window handle.
CALLBACK_FUNCTION Indicates dwCallback contains a callback function

address.

The driver should copy the value of the VIDEO_STREAM_INIT_PARMS structure's dwFlags
member into this member.

hDevice
Contains a handle to a video channel. The driver should copy the value of the
VIDEO_STREAM_INIT_PARMS structure's hVideo member into this member.

dwUser
Contains client-specified instance data passed to the callback function, if
CALLBACK_FUNCTION is set in dwFlags. The driver should copy the value of the
VIDEO_STREAM_INIT_PARMS structure's dwCallbackInst member into this member.

Comments
As indicated by the preceding member descriptions above, the VCCALLBACK structure is used to
pass VIDEO_STREAM_INIT_PARMS structure members to VC_StreamInit.

Functions, VCKernel.lib
This section describes the functions available to kernel-mode video capture drivers using
VCKernel.lib. The functions are listed in alphabetical order.

VC_AccessData
BOOLEAN

VC_AccessData(
 PDEVICE_INFO pDevInfo,
 PUCHAR pData,
 ULONG Length,
 PACCESS_ROUTINE pAccessFunc,
 PVOID pContext
);

The VC_AccessData function provides a means by which kernel-mode video capture drivers can
be protected from encountering access violations when referencing user-mode data.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
pData

Pointer to user-mode data.
Length

Length of data specified by pData.
pAccessFunc

Pointer to a callback function that accesses the specified data. The callback function must use
the following prototype format:
BOOLEAN AccessFunc (PDEVICE_INFO pDevInfo, PUCHAR pData, ULONG Length, PVOID pContext

pContext
Pointer to driver-supplied context information that is passed to the callback function.

Return Value
If the data specified by pData can be accessed, the function returns the value returned by the
callback function. Otherwise the function returns FALSE.

Comments

VC_AccessData
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 285 Windows NT DDK

The kernel-mode driver supplies the address of data to be accessed, along with the address of a
callback function that performs an operation on the data, such as copying a bitmap into the frame
buffer. The VC_AccessData function wraps the callback function in an exception handler so that
if an access violation occurs, the kernel-mode driver can continue to execute. If an access
violation occurs, the exception handler returns FALSE.

The function can only be called within the context of the user's thread. It must not be called from
the InterruptAcknowledge or CaptureService functions, because they execute within a system
context.

VC_AllocMem
PVOID

VC_AllocMem(
 PDEVICE_INFO pDevInfo,
 ULONG Length
);

The VC_AllocMem function allocates a specified amount of nonpaged memory for use by a
kernel-mode video capture driver.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
Length

Size, in bytes, of memory to be allocated.

Return Value
Returns a pointer to the allocated memory, if the operation succeeds. Otherwise returns NULL.

Comments
The VC_AllocMem function calls ExAllocatePool, with a pool type of NonPagedPool. The
allocated memory can be referenced by the driver's InterruptAcknowledge and CaptureService
function.

VC_Cleanup
VOID

VC_Cleanup(
 PDRIVER_OBJECT pDriverObject
);

The VC_Cleanup function deallocates the system resources that were allocated by a previous
call to VC_Init.

Parameters
pDriverObject

The driver object pointer received as input to the driver's DriverEntry function.

Return Value
None.

Comments
A kernel-mode video capture driver should call VC_Cleanup if a failure occurs within its
DriverEntry function after VC_Init has been called.

Additionally, the VCKernel.lib library specifies VC_Cleanup as the function to be called when the
kernel-mode driver is unloaded (by assigning the function's address to the driver object's
DriverUnload member).

VC_Cleanup
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 286 Windows NT DDK

The VC_Cleanup function performs the following operations, in the order listed:

1.Cancels outstanding IRPs.
2.Calls the kernel-mode driver's CleanupFunc function.
3.Unmaps mapped I/O memory space.
4.Removes the device's interrupt objects.
5.Releases system resources (interrupt number, DMA channel, and so on) reserved for the

device.
6.Removes the device object associated with the device.

For more information about driver objects, device objects and interrupt objects, see the
Kernel-Mode Drivers Design Guide.

VC_ConnectInterrupt
BOOLEAN

VC_ConnectInterrupt(
 PDEVICE_INFO pDevInfo,
 ULONG Interrupt,
 BOOLEAN bLatched
);

The VC_ConnectInterrupt function creates a connection between the specified interrupt number
and a kernel-mode video capture driver's interrupt service routine.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
Interrupt

Interrupt number to use.
bLatched

Set to TRUE if the interrupt is latched or FALSE if the interrupt is level-sensitive.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
The VC_ConnectInterrupt function calls HalGetInterruptVector to obtain a system interrupt
vector and IoConnectInterrupt to connect VCKernel.lib's generic ISR to the interrupt vector.
(When an interrupt occurs, VCKernel.lib's generic ISR calls the driver's InterruptAcknowledge
function.)

Before calling VC_ConnectInterrupt, a kernel-mode driver must call VC_GetResources. It must
also call VC_GetCallbackTable and fill in the returned callback table.

VC_Delay
VOID

VC_Delay(
 int nMillisecs
);

The VC_Delay function delays execution of a kernel-mode video capture driver's current thread.

Parameters
nMillisecs

Delay interval, in milliseconds.

Return Value

VC_Delay
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 287 Windows NT DDK

None.

Comments
The VC_Delay function puts the calling kernel-mode thread into a non-alertable wait state, in
kernel mode, for at least the specified number of milliseconds.

To call VC_Delay, your driver's IRQL must be less than DISPATCH_LEVEL.

See Also
VC_Stall

VC_FreeMem
VOID

VC_FreeMem(
 PDEVICE_INFO pDevInfo,
 PVOID pData,
 ULONG Length
);

The VC_FreeMem function frees memory space that was allocated by calling VC_AllocMem.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
pData

Pointer that was returned by VC_AllocMem.
Length

Size of memory allocation that was requested using VC_AllocMem.

Return Value
None.

Comments
The VC_FreeMem function calls ExFreePool to deallocate the specified memory space.

VC_GetCallbackTable
PVC_CALLBACK

VC_GetCallbackTable(
 PDEVICE_INFO pDevInfo
);

The VC_GetCallbackTable function returns the address of VCKernel.lib's callback table.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

Return Value
Pointer to a VC_CALLBACK structure.

Comments
The VC_GetCallbackTable function returns the address of a VC_CALLBACK structure.
Kernel-mode video capture drivers using VCKernel.lib must call this function and then fill in the
VC_CALLBACK structure with the addresses of the driver's callback functions. Code in
VCKernel.lib uses the structure as a dispatch table when calling the driver's callback functions.

The driver must call VC_GetCallbackTable and fill in the table from within its DriverEntry

VC_GetCallbackTable
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 288 Windows NT DDK

function. Because the table contains the addresses of interrupt handlers, it should be filled in
before the driver attempts to initialize hardware, in case the initialization process generates
interrupts.

VC_GetFrameBuffer
PUCHAR

VC_GetFrameBuffer(
 PDEVICE_INFO pDevInfo
);

The VC_GetFrameBuffer function returns a pointer to the system address space corresponding
to the device's frame buffer.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

Return Value
Pointer to the system address space to which the frame buffer is mapped.

Comments
A kernel-mode driver must call the VC_GetFrameBuffer function to obtain the mapped address
of the device's frame buffer. The frame buffer's bus-relative physical address range is mapped to
nonpaged system space by the VC_GetResources function.

VC_GetHWInfo
PVOID

VC_GetHWInfo(
 PDEVICE_INFO pDevInfo
);

The VC_GetHWInfo function returns a pointer to the driver-specified structure that was allocated
by a previous call to VC_Init.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

Return Value
Pointer to the driver-specified structure.

Comments
When a kernel-mode video capture driver calls VC_Init, it specifies the size of a structure for
which nonpaged space is allocated within the device object's device extension area. The driver
can call VC_GetHWInfo to obtain the address of the area that was allocated for this structure.
Drivers can use this structure to store device-specific context information.

For more information about device objects and device extensions, see the Kernel-Mode Drivers
Reference.

VC_GetResources
BOOLEAN

VC_GetResources(
 PDEVICE_INFO pDevInfo,
 PDRIVER_OBJECT pDriverObject,
 PUCHAR pPortBase,
 ULONG NrOfPorts,

VC_GetResources
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 289 Windows NT DDK

 ULONG Interrupt,
 BOOLEAN bLatched,
 PUCHAR pFrameBuffer,
 ULONG FrameLength,
);

The VC_GetResources function reserves system resources for a device, and maps the device's
I/O address space and frame buffer into system address space.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
pDriverObject

The driver object pointer received as input to the driver's DriverEntry function.
pPortBase

Bus-relative physical base address of the device's I/O port address space.
NrOfPorts

Number of port addresses.
Interrupt

Interrupt number.
bLatched

Set to TRUE if the interrupt is latched or FALSE if the interrupt is level-sensitive.
pFrameBuffer

Bus-relative physical base address of the device's frame buffer.
FrameLength

Length of the frame buffer.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE.

Comments
A kernel-mode video capture driver using VCKernel.lib must call VC_GetResources from within
its DriverEntry function. The VC_GetResources function performs the following operations, in
the order listed:

1. Determines the bus type.
2. Maps the device's I/O port space to system space.
3. Maps the device's frame buffer to system space.
4. Reserves the interrupt number, mapped I/O port space, and mapped frame buffer space for

use by the device.

The VC_GetResources function calls HalTranslateBusAddress, MmMapIoSpace, and
IoReportResourceUsage.

VC_In
BYTE

VC_In(
 PDEVICE_INFO pDevInfo,
 BYTE bOffset
);

The VC_In function reads one byte from a device's mapped I/O port address space.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

VC_In
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 290 Windows NT DDK

bOffset
Offset from the mapped I/O port's base address.

Return Value
Byte contents of the specified port address offset.

Comments
A kernel-mode video capture driver specifies the base address of a device's I/O port address
space when calling VC_GetResources. The bOffset parameter to VC_In specifies an offset from
that base address.

See Also
VC_Out

VC_Init
PDEVICE_INFO

VC_Init(
 PDRIVER_OBJECT pDriverObject,
 PUNICODE_STRING szRegistryPathName,
 ULONG HWInfoSize
);

The VC_Init function creates a device object and stores the device name in the registry.

Parameters
pDriverObject

The driver object pointer that was received as input to the driver's DriverEntry function.
szRegistryPathName

Pointer to a string containing the registry path to the driver's subkey. Use the path name that
was received as the RegistryPathName argument to DriverEntry.

HWInfoSize
Size, in bytes, of a driver-defined structure used for storing device-specific context information.
Can be zero.

Return Value
Returns a pointer to a DEVICE_INFO structure.

Comments
A kernel-mode video capture driver using VCKernel.lib must call VC_Init from within its
DriverEntry function, before calling any other VCKernel.lib functions.

The DEVICE_INFO structure pointer returned by VC_Init is used as input to subsequent calls to
other VCKernel.lib functions. Contents of the DEVICE_INFO structure are not available to the
kernel-mode driver.

The driver uses the HWInfoSize parameter to specify the size of a driver-defined structure. The
VC_Init function allocates nonpaged space for this structure within the device object's device
extension area. The driver can call VC_GetHWInfo to obtain the address of the area that was
allocated for the structure. Drivers can use this structure to store device-specific context
information. (For more information about device objects and device extensions, see the
Kernel-Mode Drivers Design Guide.)

The VC_Init function calls IoCreateDevice to create a device object. The device's name is
"vidcap", which is defined by DD_VIDCAP_DEVICE_NAME_U in ntddvidc.h, with an appended
number (0, 1, 2, and so on). The function writes this device name into the registry, under the
registry path
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters,
where DriverName is the driver name that the user-mode driver specified as input to
VC_OpenProfileAccess when it installed the kernel-mode driver.

VC_Init
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 291 Windows NT DDK

VC_Out
VOID

VC_Out(
 PDEVICE_INFO pDevInfo,
 BYTE bOffset,
 BYTE bData
);

The VC_Out function writes one byte into a device's mapped I/O port address space.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
bOffset

Offset from the mapped I/O port's base address.
bData

Data byte to be written.

Return Value
None.

Comments
A kernel-mode video capture driver specifies the base address of a device's I/O port address
space when calling VC_GetResources. The bOffset parameter to VC_Out specifies an offset
from that base address.

See Also
VC_In

VC_ReadProfile
DWORD

VC_ReadProfile(
 PDEVICE_INFO pDevInfo,
 PWCHAR szValueName,
 DWORD dwDefault
);

The VC_ReadProfile function reads the DWORD value associated with the specified value
name, under the driver's \Parameters registry key.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
szValueName

Pointer to a UNICODE string identifying the name of a registry value.
dwDefault

Specifies a default value that is returned if an error occurs locating or reading the requested
value.

Return Value
Returns the value assigned to the ValueName string, if the operation succeeds. Otherwise the
function returns the value specified by dwDefault.

Comments
The value name and value are read from the registry path

VC_ReadProfile
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 292 Windows NT DDK

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters,
where DriverName is the driver name specified as input to VC_OpenProfileAccess.

To store values under a driver's \Parameters registry key, call VC_WriteProfile.

Note: A function named VC_ReadProfile is also provided by VCUser.lib for user-mode video
capture drivers. To see that function's description, click here.

VC_SetImageSize
VOID

VC_SetImageSize(
 PDEVICE_INFO pDevInfo,
 int ImageSize
);

The VC_SetImageSize function specifies the maximum number of bytes needed to store an
image using the current format.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
ImageSize

Maximum number of bytes needed to store an image.

Comments
A kernel-mode video capture driver should call VC_SetImageSize whenever a new data format is
selected. The number specified for ImageSize should represent the largest number of bytes that
an image can be, using the current format. In other words, the value should represent the smallest
size that a buffer can be in order to store an entire capture frame, using the current format.

Code within VCKernel.lib uses the specified ImageSize value to determine if each buffer received
with an IOCTL_VIDC_ADD_BUFFER control code is large enough to receive the frame buffer
contents. Additionally, if the system's memory resources are too low to allow locking of
client-specified buffers into the client's address space, VCKernel.lib allocates a system buffer of
ImageSize size to receive the frame buffer contents, which are then copied into the client's buffers
in smaller segments.

See Also
VC_StreamAddBuffer

VC_Stall
VOID

VC_Stall(
 int nMicrosecs
);

The VC_Stall function stalls the current processor for the specified number of microseconds.

Parameters
nMicrosecs

Number of microseconds to stall.

Return Value
None.

Comments
The VC_Stall function causes the current processor to execute a processor-specific wait loop until

VC_Stall
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 293 Windows NT DDK

the specified time has passed. The function is useful for pausing between device access
operations, if there is a potential for fast processors to send instructions to the device at a speed
that is too high for the device.

Delays longer than 25 microseconds are not recommended.

Your driver can call VC_Install when executing at any IRQL.

See Also
VC_Delay

VC_SynchronizeDPC
BOOLEAN

VC_SynchronizeDPC(
 PDEVICE_INFO pDevInfo,
 PSYNC_ROUTINE pSync,
 PVOID pContext
);

The VC_SynchronizeDPC function synchronizes access to objects that are referenced by a
kernel-mode video capture driver's CaptureService function.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
pSync

Pointer to a callback function. The callback function must use the following prototype format:
BOOLEAN pSync(PVOID pContext);

pContext
Pointer to context information to be passed to the callback function.

Return Value
Returns the callback function's return value.

Comments
A driver's CaptureService function executes at an IRQL of DISPATCH_LEVEL. If other code
within the driver must access the same objects (frame buffers, data structures, and so on) that the
CaptureService function references, then all code that references the objects, including the code
within CaptureService, must be synchronized by using VC_SynchronizeDPC.

To use VC_SynchronizeDPC, place each piece of code that references the objects to be
protected into a callback function. Specify each callback function as a pSync parameter to a
VC_SynchronizeDPC call. Typically, you use the pContext parameter to indicate the objects to
be referenced.

The VC_SynchronizeDPC function acquires a spin lock and executes the callback function at an
IRQL of DISPATCH_LEVEL. If you access an object only within code that is included in
VC_SynchronizeDPC callbacks, then other processors cannot simultaneously access the object,
and lower-priority code on the current processor cannot obtain access.

Code that calls VC_SynchronizeDPC must be executing at an IRQL of DISPATCH_LEVEL or
lower.

See Also
VC_SynchronizeExecution

VC_SynchronizeExecution
BOOLEAN

VC_SynchronizeExecution
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 294 Windows NT DDK

VC_SynchronizeExecution(
 PDEVICE_INFO pDevInfo,
 PSYNC_ROUTINE pSync,
 PVOID pContext
);

The VC_SynchronizeExecution function synchronizes access to objects that are referenced by a
kernel-mode video capture driver's InterruptAcknowledge function.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
pSync

Pointer to a callback function. The callback function must use the following prototype format:
BOOLEAN pSync(PVOID pContext);

pContext
Pointer to context information to be passed to the callback function.

Return Value
Returns the callback function's return value.

Comments
A driver's InterruptAcknowledge function executes at a device IRQL (DIRQL). If other code
within the driver must access the same objects (generally, device registers) that the
InterruptAcknowledge function references, then all code that references the objects, except the
code within InterruptAcknowledge, must be synchronized by using VC_SynchronizeExecution.

To use VC_SynchronizeExecution, place each piece of code that references the objects to be
protected into a callback function. Specify each callback function as a pSync parameter to a
VC_SynchronizeExecution call. Typically, you use the pContext parameter to indicate the
objects to be referenced.

The VC_SynchronizeExecution function calls the system's KeSynchronizeExecution function
to acquire a spin lock and execute the callback function at the same DIRQL that the
InterruptAcknowledge function uses. If you access an object only within InterruptAcknowledge
or within code that is included in VC_SynchronizeExecution callbacks, then other processors
cannot simultaneously access the object, and lower-priority code on the current processor cannot
obtain access.

Code that calls VC_SynchronizeExecution must be executing at the device's DIRQL or lower. A
driver's CaptureService function, which executes at an IRQL of DISPATCH_LEVEL, can call
VC_SynchronizeExecution.

The driver's InterruptAcknowledge function should not call VC_SynchronizeExecution,
because the Windows NT I/O Manager handles its synchronization.

See Also
VC_SynchronizeDPC

VC_WriteProfile
BOOL

VC_WriteProfile(
 PDEVICE_INFO pDevInfo,
 PWCHAR szValueName,
 DWORD ValueData
);

The VC_WriteProfile function assigns the specified DWORD value to the specified value name,
under the driver's \Parameters registry key.

VC_WriteProfile
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 295 Windows NT DDK

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
szValueName

Pointer to a UNICODE string identifying the name of a registry value.
ValueData

Value to be assigned to ValueName in the registry.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns false.

Comments
The value name and value are written to the registry path
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DriverName\Parameters,
where DriverName is the driver name specified as input to VC_OpenProfileAccess.

To read values from a driver's \Parameters registry key, call VC_ReadProfile.

Note: A function named VC_WriteProfile is also provided by VCUser.lib for user-mode video
capture drivers. To see that function's description, click here.

Structures, VCKernel.lib
This section describes the structures available to kernel-mode video capture drivers using
VCKernel.lib.

VC_CALLBACK
typedef struct _VC_CALLBACK {
 BOOLEAN (*DeviceOpenFunc)(PDEVICE_INFO);
 BOOLEAN (*DeviceCloseFunc)(PDEVICE_INFO);
 BOOLEAN (*ConfigFormatFunc)(PDEVICE_INFO, PCONFIG_INFO);
 BOOLEAN (*ConfigDisplayFunc)(PDEVICE_INFO, PCONFIG_INFO);
 BOOLEAN (*ConfigSourceFunc)(PDEVICE_INFO, PCONFIG_INFO);
 DWORD (*GetOverlayModeFunc) (PDEVICE_INFO);
 BOOLEAN (*SetKeyRGBFunc)(PDEVICE_INFO, PRGBQUAD);
 BOOLEAN (*SetKeyPalIdxFunc)(PDEVICE_INFO, ULONG);
 BOOLEAN (*SetOverlayRectsFunc)(PDEVICE_INFO, POVERLAY_RECTS);
 BOOLEAN (*SetOverlayOffsetFunc)(PDEVICE_INFO, PRECT);
 ULONG (*GetKeyColourFunc)(PDEVICE_INFO);
 BOOLEAN (*CaptureFunc)(PDEVICE_INFO, BOOL);
 BOOLEAN (*OverlayFunc)(PDEVICE_INFO, BOOL);
 BOOLEAN (*StreamInitFunc)(PDEVICE_INFO, ULONG);
 BOOLEAN (*StreamFiniFunc)(PDEVICE_INFO);
 BOOLEAN (*StreamStartFunc)(PDEVICE_INFO);
 BOOLEAN (*StreamStopFunc)(PDEVICE_INFO);
 ULONG (*StreamGetPositionFunc)(PDEVICE_INFO);
 BOOLEAN (*InterruptAcknowledge)(PDEVICE_INFO);
 ULONG (*CaptureService)(PDEVICE_INFO, PUCHAR, PULONG, ULONG);
 BOOLEAN (*DrawFrameFunc)(PDEVICE_INFO, PDRAWBUFFER);
 BOOLEAN (*CleanupFunc)(PDEVICE_INFO);
} VC_CALLBACK, * PVC_CALLBACK;

The VC_CALLBACK structure is a dispatch table used by VCKernel.lib to call functions provided
by kernel-mode video capture drivers. The structure is defined in vckernel.h.

Members

VC_CALLBACK
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 296 Windows NT DDK

DeviceOpenFunc
Pointer to a kernel-mode video capture driver's DeviceOpenFunc function.

DeviceCloseFunc
Pointer to a kernel-mode video capture driver's DeviceCloseFunc function.

ConfigFormatFunc
Pointer to a kernel-mode video capture driver's ConfigFormatFunc function.

ConfigDisplayFunc
Pointer to a kernel-mode video capture driver's ConfigDisplayFunc function.

ConfigSourceFunc
Pointer to a kernel-mode video capture driver's ConfigSourceFunc function.

GetOverlayModeFunc
Pointer to a kernel-mode video capture driver's GetOverlayModeFunc function.

SetKeyRGBFunc
Pointer to a kernel-mode video capture driver's SetKeyRGBFunc function.

SetKeyPalIdxFunc
Pointer to a kernel-mode video capture driver's SetKeyPalIdxFunc function.

SetOverlayRectsFunc
Pointer to a kernel-mode video capture driver's SetOverlayRectsFunc function.

SetOverlayOffsetFunc
Pointer to a kernel-mode video capture driver's SetOverlayOffsetFunc function.

GetKeyColourFunc
Pointer to a kernel-mode video capture driver's GetKeyColourFunc function.

CaptureFunc
Pointer to a kernel-mode video capture driver's CaptureFunc function.

OverlayFunc
Pointer to a kernel-mode video capture driver's OverlayFunc function.

StreamInitFunc
Pointer to a kernel-mode video capture driver's StreamInitFunc function.

StreamFiniFunc
Pointer to a kernel-mode video capture driver's StreamFiniFunc function.

StreamStartFunc
Pointer to a kernel-mode video capture driver's StreamStartFunc function.

StreamStopFunc
Pointer to a kernel-mode video capture driver's StreamStopFunc function.

StreamGetPositionFunc
Pointer to a kernel-mode video capture driver's StreamGetPositionFunc function.

InterruptAcknowledge
Pointer to a kernel-mode video capture driver's InterruptAcknowledge function.

CaptureService
Pointer to a kernel-mode video capture driver's CaptureService function.

DrawFrameFunc
Pointer to a kernel-mode video capture driver's DrawFrameFunc function.

CleanupFunc
Pointer to a kernel-mode video capture driver's CleanupFunc function.

Comments
A kernel-mode video capture driver using VCKernel.lib is responsible for filling in VCKernel.lib's
VC_CALLBACK structure. The driver obtains the structure's address by calling
VC_GetCallbackTable. The driver should obtain the structure's address and fill in the table from
within its DriverEntry function, before hardware initialization is attempted.

Driver Functions Used with VCKernel.lib

Driver Functions Used with VCKernel.lib
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 297 Windows NT DDK

This section describes, in alphabetic order, the driver-supplied functions that kernel-mode video
capture drivers must provide, if they are using VCKernel.lib.

CaptureFunc
BOOLEAN

CaptureFunc(
 PDEVICE_INFO pDevInfo,
 BOOL bCapture
);

The CaptureFunc function is provided by kernel-mode video capture drivers to enable and
disable capturing video data. The CaptureFunc name is a placeholder for a driver-specified
function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
bCapture

Set to TRUE if data capture is to be enabled, and FALSE if it is to be disabled.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DEVICE_CONFIGURATION_ERROR.

Comments
The VCKernel.lib library calls a kernel-mode driver's CaptureFunc function when the driver
receives an IOCTL_VIDC_CAPTURE_ON or IOCTL_VIDC_CAPTURE_OFF control code.
User-mode drivers using VCUser.lib send this control code by calling VC_Capture.

The driver might also call the CaptureFunc function itself, while transferring streams of captured
data. The driver typically disables data acquisition between the time the frame buffer has been
filled and the time the driver has finished copying its contents, and then re-enables it.

Support for a CaptureFunc function is required. The driver must place the address of its
CaptureFunc function in the VC_CALLBACK structure supplied by VCKernel.lib. If the driver
does not support the function, VCKernel.lib sets the Win32 error code value to
STATUS_INVALID_DEVICE_REQUEST if the driver receives an IOCTL_VIDC_CAPTURE_ON
or IOCTL_VIDC_CAPTURE_OFF control code.

If possible, the function should disable data acquisition in a manner that freezes the current
overlay display.

CaptureService
ULONG

CaptureService(
 PDEVICE_INFO pDevInfo,
 PUCHAR pBuffer,
 PULONG pTimeStamp,
 ULONG BufferLength
);

The CaptureService function is a kernel-mode video capture driver's deferred procedure call
(DPC) function, used for copying captured video data from the frame buffer to client-supplied
buffers. The function is driver-defined, and the CaptureService name is a placeholder for a
driver-specified function name.

Parameters
pDevInfo

CaptureService
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 298 Windows NT DDK

Pointer to the DEVICE_INFO structure returned by VC_Init.
pBuffer

Pointer to a page-locked buffer. Can be NULL (see the following Comments section).
pTimeStamp

Address of a ULONG location to return the time, in milliseconds, at which the frame was
captured

BufferLength
Size, in bytes, of the buffer specified by pBuffer.

Return Value
If the driver has finished using the buffer pointed to by pBuffer, it should return the number of
bytes written to the buffer. If the driver returns zero and pBuffer is not NULL, VCKernel.lib will
return the same buffer the next time it calls CaptureService.

Comments
The VCKernel.lib library provides a generic DPC function that is called each time the driver's
InterruptAcknowledge function returns TRUE. This generic DPC function calls the driver's
CaptureService function, which is responsible for copying the current frame buffer contents into a
client buffer. The function executes at an IRQL of DISPATCH_LEVEL.

The CaptureService function receives, in pBuffer, a pointer to the next available buffer, which
has been page-locked. (This buffer usually is client-supplied, but if the system has limited
memory resources, the buffer might be one that VCKernel.lib allocated from system space. This
situation is irrelevant to the driver.)

If pBuffer is NULL, no buffers are available. In this case, the driver should drop the frame
contents (typically by just returning zero), and VCKernel.lib will increment its count of dropped
frames.

If pBuffer is not NULL, and if the driver does not completely fill the specified buffer with a single
frame, it can return zero to indicate that VCKernel.lib should specify the same buffer the next time
it calls CaptureService.

The driver returns a time stamp that is relative to the beginning of the stream and is reset by the
driver's StreamStartFunc function. The time stamp should be recorded by the driver's
InterruptAcknowledge function  not its CaptureService function  because there can be a
time delay before the latter function is called.

If other code within the kernel-mode driver references the same objects that the CaptureService
function references, the driver must use VC_SynchronizeDPC to synchronize access to the
objects.

Support for a CaptureService function is required. The driver must place the address of its
CaptureService function in the VC_CALLBACK structure supplied by VCKernel.lib.

For more information about deferred procedure calls (DPCs) see the Kernel Mode Drivers Design
Guide.

CleanupFunc
BOOLEAN

CleanupFunc(
 PDEVICE_INFO pDevInfo
);

The CleanupFunc function performs operations that must be completed before a kernel-mode
video capture driver is unloaded. The function is provided by the driver, and the CleanupFunc
name is a placeholder for a driver-specified function name.

Parameters
pDevInfo

CleanupFunc
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 299 Windows NT DDK

Pointer to the DEVICE_INFO structure returned by VC_Init.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. (The VCKernel.lib library
does not currently test the return value.)

Comments
A kernel-mode driver's CleanupFunc function is called by the VCKernel.lib library's VC_Cleanup
function. The CleanupFunc function might disable hardware and deallocate memory space that
was allocated by the driver's DriverEntry function.

Support for a CleanupFunc function is optional. If a driver does support the function, it must
place its address in the VC_CALLBACK structure supplied by VCKernel.lib.

See Also
DeviceCloseFunc

ConfigDisplayFunc
BOOLEAN

ConfigDisplayFunc(
 PDEVICE_INFO pDevInfo,
 PCONFIG_INFO pConfig
);

The ConfigDisplayFunc function sets characteristics of the overlay display. The function is
provided by kernel-mode video capture drivers, and the ConfigDisplayFunc name is a
placeholder for a driver-specified function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
pConfig

Pointer to a CONFIG_INFO structure.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DEVICE_CONFIGURATION_ERROR.

Comments
The VCKernel.lib library calls a kernel-mode driver's ConfigDisplayFunc function when the
driver receives an IOCTL_VIDC_CONFIG_DISPLAY control code. User-mode drivers using
VCUser.lib send this control code by calling VC_ConfigDisplay.

A kernel-mode driver typically uses its ConfigDisplayFunc function to set display hardware
parameters, based on information that the user-mode driver has provided in the CONFIG_INFO
structure.

Support for a ConfigDisplayFunc function is required, if the device provides overlay capabilities.
The driver must place the address of its ConfigDisplayFunc function in the VC_CALLBACK
structure supplied by VCKernel.lib. If a driver that does not provide a ConfigDisplayFunc
function receives an IOCTL_VIDC_CONFIG_DISPLAY control code, VCKernel.lib sets the Win32
error code value to STATUS_INVALID_DEVICE_REQUEST.

ConfigFormatFunc
BOOLEAN

ConfigFormatFunc(
 PDEVICE_INFO pDevInfo,
 PCONFIG_INFO pConfig

ConfigFormatFunc
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 300 Windows NT DDK

);

The ConfigFormatFunc function sets video data format characteristics within a kernel-mode
video capture driver. The function is provided by the driver, and the ConfigFormatFunc name is
a placeholder for a driver-specified function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
pConfig

Pointer to a CONFIG_INFO structure.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DEVICE_CONFIGURATION_ERROR.

Comments
The VCKernel.lib library calls a kernel-mode driver's ConfigFormatFunc function when the driver
receives an IOCTL_VIDC_CONFIG_FORMAT control code. User-mode drivers using VCUser.lib
send this control code by calling VC_ConfigFormat.

A kernel-mode driver typically uses its ConfigFormatFunc function to set format-based
information, such as color translation table contents, scaling parameters, and image size, based
on information that the user-mode driver has provided in the CONFIG_INFO structure. The
function should also call VC_SetImageSize to notify VCKkernel.lib of the maximum image size.

Support for a ConfigFormatFunc function is required. The driver must place the address of its
ConfigFormatFunc function in the VC_CALLBACK structure supplied by VCKernel.lib. If a driver
that does not provide a ConfigFormatFunc function receives an
IOCTL_VIDC_CONFIG_FORMAT control code, VCKernel.lib sets the Win32 error code value to
STATUS_INVALID_DEVICE_REQUEST.

ConfigSourceFunc
BOOLEAN

ConfigSourceFunc(
 PDEVICE_INFO pDevInfo,
 PCONFIG_INFO pConfig
);

The ConfigSourceFunc function sets characteristics of the video source. The function is
provided by kernel-mode video capture drivers, and the ConfigSourceFunc name is a
placeholder for a driver-specified function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
pConfig

Pointer to a CONFIG_INFO structure.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DEVICE_CONFIGURATION_ERROR.

Comments
The VCKernel.lib library calls a kernel-mode driver's ConfigSourceFunc function when the driver
receives an IOCTL_VIDC_CONFIG_SOURCE control code. User-mode drivers using VCUser.lib
send this control code by calling VC_ConfigSource.

A kernel-mode driver typically uses its ConfigSourceFunc function to set video source hardware

ConfigSourceFunc
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 301 Windows NT DDK

parameters, based on information that the user-mode driver has provided in the CONFIG_INFO
structure.

Support for a ConfigSourceFunc function is required. The driver must place the address of its
ConfigSourceFunc function in the VC_CALLBACK structure supplied by VCKernel.lib. If a driver
that does not provide a ConfigSourceFunc function receives an
IOCTL_VIDC_CONFIG_SOURCE control code, VCKernel.lib sets the Win32 error code value to
STATUS_INVALID_DEVICE_REQUEST.

DeviceCloseFunc
BOOLEAN

DeviceCloseFunc(
 PDEVICE_INFO pDevInfo
);

The DeviceCloseFunc function performs operations that must be completed when a video
capture device is closed. The function is provided by the kernel-mode driver, and the
DeviceCloseFunc name is a placeholder for a driver-specified function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DRIVER_INTERNAL_ERROR.

Coments
The VCKernel.lib library calls the kernel-mode driver's DeviceCloseFunc function when it
receives an IRP_MJ_CLOSE function code, which indicates the client is closing the device. The
DeviceCloseFunc function might disable hardware and deallocate memory space that the driver
allocated when the device was opened.

Support for a DeviceCloseFunc function is optional. If a driver does support the function, it must
place its address in the VC_CALLBACK structure supplied by VCKernel.lib.

See Also
CleanupFunc

DeviceOpenFunc
BOOLEAN

DeviceOpenFunc(
 PDEVICE_INFO pDevInfo
);

The DeviceOpenFunc function performs operations that must be completed when a video
capture device is opened. The function is provided by the kernel-mode driver, and the
DeviceOpenFunc name is a placeholder for a driver-specified function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DRIVER_INTERNAL_ERROR.

Coments

DeviceOpenFunc
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 302 Windows NT DDK

The VCKernel.lib library calls the kernel-mode driver's DeviceOpenFunc function when it
receives an IRP_MJ_CREATE function code, which indicates a client is opening the device.
User-mode drivers using VCUser.lib send this function code by calling VC_OpenDevice. The
DeviceOpenFunc function might enable hardware or allocate memory space. The sample driver,
bravado.sys, uses its DeviceOpenFunc function to obtain characteristics of the user's display
device, which are placed in the registry by the user-mode driver (see Opening and Closing a
Device, Using VCUser.lib).

Support for a DeviceOpenFunc function is optional. If a driver does support the function, it must
place its address in the VC_CALLBACK structure supplied by VCKernel.lib.

See Also
DeviceCloseFunc

DrawFrameFunc
BOOLEAN

DrawFrameFunc(
 PDEVICE_INFO pDevInfo,
 PDRAWBUFFER pDraw
);

The DrawFrameFunc function copies bitmap data into the frame buffer. The function is provided
by the kernel-mode driver, and the DrawFrameFunc name is a placeholder for a driver-specified
function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
pDraw

Pointer to a DRAWBUFFER structure.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DRIVER_INTERNAL_ERROR.

Comments
The VCKernel.lib library calls a kernel-mode driver's DrawFrameFunc function when the driver
receives an IOCTL_VIDC_DRAW_FRAME control code. User-mode drivers using VCUser.lib
send this control code by calling VC_DrawFrame.

The pDraw parameter points to a DRAWBUFFER structure describing the bitmap data to be
copied into the frame buffer. The driver should read the structure's Format member to determine
if the specified format is one that either the device accepts for playback, or that the driver can
convert into one the device accepts. (You should use the driver's GetOverlayModeFunc function
to indicate the supported formats.)

To protect the driver from access violations, you should place code that references the supplied
bitmap in a routine that can be called by using VC_AccessData. To obtain the frame buffer's
address, the driver should call VC_GetFrameBuffer.

The driver should read data from the bitmap, convert it if necessary, and place it in the frame
buffer. Current settings for key color and overlay rectangle description should not be changed.

Support for a DrawFrameFunc function is required, if the device supports playback. If a driver
does support the function, it must place its address in the VC_CALLBACK structure supplied by
VCKernel.lib. If a driver that does not provide a DrawFrameFunc function receives an
IOCTL_VIDC_DRAW_FRAME control code, VCKernel.lib sets the Win32 error code value to
STATUS_INVALID_DEVICE_REQUEST.

The sample kernel-mode driver, bravado.sys, supports video playback, but its companion

DrawFrameFunc
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 303 Windows NT DDK

user-mode driver, bravado.dll, does not. Instead, the msyuv.dll codec calls bravado.sys to play
back YUV-formatted compressed data.

GetKeyColourFunc
ULONG

GetKeyColourFunc(
 PDEVICE_INFO pDevInfo
);

The GetKeyColourFunc function returns the current key color. The function is provided by the
kernel-mode driver, and the GetKeyColourFunc name is a placeholder for a driver-specified
function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

Return Value
Returns the current key color. See the following Comments section.

Comments
The VCKernel.lib library calls a kernel-mode driver's GetKeyColourFunc function when the
driver receives an IOCTL_VIDC_GET_KEY_COLOUR control code. User-mode drivers using
VCUser.lib send this control code by calling VC_GetKeyColour.

The driver returns the key color as either an RGBQUAD type or as a palette index number. The
return type must be consistent with the value of the VCO_KEYCOLOUR_RGB flag
returned by the driver's GetOverlayModeFunc function. That is, if the driver sets the flag, it must
return an RGBQUAD-typed key color.

Support for a GetKeyColourFunc function is required, if the device supports a key color. If a
driver does support the function, it must place its address in the VC_CALLBACK structure
supplied by VCKernel.lib. If a driver that does not provide a GetKeyColourFunc function
receives an IOCTL_VIDC_GET_KEY_COLOUR control code, VCKernel.lib sets the Win32 error
code value to STATUS_INVALID_DEVICE_REQUEST.

GetOverlayModeFunc
DWORD

GetOverlayModeFunc(
 PDEVICE_INFO pDevInfo
);

The GetOverlayModeFunc function returns the device's overlay capabilities. The function is
provided by the kernel-mode driver, and the GetOverlayModeFunc name is a placeholder for a
driver-specified function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

Return Value
Returns a DWORD value containing flags. The following flags are defined.

Flag Definition
VCO_KEYCOLOUR Indicates the device supports a key color.
VCO_KEYCOLOUR_FIXED Indicates the key color cannot be modified.
VCO_KEYCOLOUR_RGB If set, indicates the key color must be specified as an

RGB color. If clear, indicates the key color must be

GetOverlayModeFunc
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 304 Windows NT DDK

specified as a palette index number.
VCO_SIMPLE_RECT Indicates the device supports a single rectangular

overlay region.
VCO_COMPLEX_REGION Indicates the device supports a complex

(multi-rectangle) overlay region.
VCO_CAN_DRAW_Y411 Indicates the device can display bitmaps that contain

YUV 4:1:1-formatted data.
VCO_CAN_DRAW_S422 Indicates the device can display bitmaps that contain

YUV 4:2:2-formatted data.

Comments
The VCKernel.lib library calls a kernel-mode driver's GetOverlayModeFunc function when the
driver receives an IOCTL_VIDC_OVERLAY_MODE control code. User-mode drivers using
VCUser.lib send this control code by calling VC_GetOverlayMode.

The driver sets the appropriate flags in the return value, based on the hardware's capabilities.

Support for a GetOverlayModeFunc function is required. The driver must place the function's
address in the VC_CALLBACK structure supplied by VCKernel.lib.

InterruptAcknowledge
BOOLEAN

InterruptAcknowledge(
 PDEVICE_INFO pDevInfo
);

The InterruptAcknowledge function is a kernel-mode video capture driver's interrupt service
routine (ISR), used to acknowledge a device interrupt. The function is driver-defined, and the
InterruptAcknowledge name is a placeholder for a driver-specified function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

Return Value
Returns TRUE if a frame is available and it is time to capture another frame. Otherwise returns
FALSE. (See the following Comments section.)

Comments
The VCKernel.lib library provides a generic ISR that is called each time a device interrupt occurs
on the interrupt number that the driver passed to VC_ConnectInterrupt. This generic ISR calls
the driver's InterruptAcknowledge function.

Typically the InterruptAcknowledge function re-enables the device interrupt, if a capture stream
operation is in progress.

The function is responsible for determining if it is time to capture a frame. It should compare the
time since the last frame was captured to the client-specified time between frames. (The driver
receives the client-specified time between frames as input to its StreamInitFunc function.)

If it is now time to capture a frame, and if a full frame is available, the function must return TRUE.
Returning TRUE causes the generic ISR to call IoRequestDPC, which schedules the driver's
CaptureService (DPC) function, which in turn is responsible for capturing the frame.

Like all device ISRs under Windows NT, the driver's InterruptAcknowledge function executes at
the device's IRQL and should be written to execute as quickly as possible. You should place data
transfer operations in the driver's CaptureService function. The InterruptAcknowledge function
should record the frame's time stamp.

If other code within the kernel-mode driver references the same objects that the

InterruptAcknowledge
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 305 Windows NT DDK

InterruptAcknowledge function references, the driver must use VC_SynchronizeExecution to
synchronize access to the objects.

Support for an InterruptAcknowledge function is required. The driver must place the address of
its InterruptAcknowledge function in the VC_CALLBACK structure supplied by VCKernel.lib.

For more information about interrupt service routines (ISRs) and deferred procedure calls (DPC's)
see the Kernel Mode Drivers Design Guide.

OverlayFunc
BOOLEAN

OverlayFunc(
 PDEVICE_INFO pDevInfo,
 BOOL bOverlay
);

The OverlayFunc function is provided by kernel-mode video capture drivers to enable and
disable the overlay display. The OverlayFunc name is a placeholder for a driver-specified
function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
bOverlay

Set to TRUE if data capture is to be enabled, and FALSE if it is to be disabled.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DEVICE_CONFIGURATION_ERROR.

Comments
The VCKernel.lib library calls a kernel-mode driver's OverlayFunc function when the driver
receives an IOCTL_VIDC_OVERLAY_ON or IOCTL_VIDC_OVERLAY_OFF control code.
User-mode drivers using VCUser.lib send this control code by calling VC_Overlay.

Support for an OverlayFunc function is required, if the device provides overlay capabilities. The
driver must place the address of its OverlayFunc function in the VC_CALLBACK structure
supplied by VCKernel.lib. If a driver that does not support the OverlayFunc function receives an
IOCTL_VIDC_OVERLAY_ON or IOCTL_VIDC_OVERLAY_OFF control code, VCKernel.lib sets
the Win32 error code value to STATUS_INVALID_DEVICE_REQUEST.

SetKeyPalIdxFunc
BOOLEAN

SetKeyPalIdxFunc(
 PDEVICE_INFO pDevInfo,
 ULONG palidx
);

The SetKeyPalIdxFunc function sets the overlay destination image's key color to the specified
palette index number. The function is provided by the kernel-mode driver, and the
SetKeyPalIdxFunc name is a placeholder for a driver-specified function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
palidx

Palette index number.

SetKeyPalIdxFunc
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 306 Windows NT DDK

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DEVICE_CONFIGURATION_ERROR.

Comments
The VCKernel.lib library calls a kernel-mode driver's SetKeyPalIdxFunc function when the driver
receives an IOCTL_VIDC_SET_KEY_PALIDX control code. User-mode drivers using VCUser.lib
send this control code by calling VC_SetKeyColourPalIdx.

You can assume that the driver's SetKeyPalIdxFunc function will be called only if a previous call
to its GetOverlayModeFunc function has returned with the VCO_KEYCOLOUR flag set and the
VCO_KEYCOLOUR_RGB flag cleared.

Support for a SetKeyPalIdxFunc function is required, if the device supports a modifiable key
color. If a driver does support the function, it must place its address in the VC_CALLBACK
structure supplied by VCKernel.lib. If a driver that does not provide a SetKeyPalIdxFunc function
receives an IOCTL_VIDC_SET_KEY_PALIDX control code, VCKernel.lib sets the Win32 error
code value to STATUS_INVALID_DEVICE_REQUEST.

For more information about palette index numbers, see VC_SetKeyColourPalIdx.

See Also
GetKeyColourFunc, SetKeyRGBFunc

SetKeyRGBFunc
BOOLEAN

SetKeyRGBFunc(
 PDEVICE_INFO pDevInfo,
 PRGBQUAD pRGB
);

The SetKeyRGBFunc function sets the overlay destination image's key color to the specified
RGB color. The function is provided by the kernel-mode driver, and the SetKeyRGBFunc name
is a placeholder for a driver-specified function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
pRGB

Pointer to an RGBQUAD structure containing an RGB color specification. (The RGBQUAD
structure is described in the Win32 SDK.)

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DEVICE_CONFIGURATION_ERROR.

Comments
The VCKernel.lib library calls a kernel-mode driver's SetKeyRGBFunc function when the driver
receives an IOCTL_VIDC_SET_KEY_PALIDX control code. User-mode drivers using VCUser.lib
send this control code by calling VC_SetKeyColourRGB.

You can assume that the drivers SetKeyRGBFunc function will be called only if a previous call to
its GetOverlayModeFunc function has returned with both the VCO_KEYCOLOUR and
VCO_KEYCOLOUR_RGB flags set.

Support for a SetKeyRGBFunc function is required, if the device supports a modifiable key color.
If a driver does support the function, it must place its address in the VC_CALLBACK structure
supplied by VCKernel.lib. If a driver that does not provide a SetKeyRGBFunc function receives
an IOCTL_VIDC_SET_KEY_RGB control code, VCKernel.lib sets the Win32 error code value to

SetKeyRGBFunc
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 307 Windows NT DDK

STATUS_INVALID_DEVICE_REQUEST.

See Also
GetKeyColourFunc, SetKeyPalIdxFunc

SetOverlayOffsetFunc
BOOLEAN

SetOverlayOffsetFunc(
 PDEVICE_INFO pDevInfo,
 PRECT prc
);

The SetOverlayOffsetFunc function sets the overlay offset rectangle. This rectangle defines
which portion of the frame buffer appears in the overlay window. The function is provided by the
kernel-mode driver, and the SetOverlayOffsetFunc name is a placeholder for a driver-specified
function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.
prc

Pointer to a RECT structure containing screen coordinates that describe the offset rectangle.
(The RECT structure is described in the Win32 SDK.)

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DEVICE_CONFIGURATION_ERROR.

Comments
The VCKernel.lib library calls a kernel-mode driver's SetOverlayOffsetFunc function when the
driver receives an IOCTL_VIDC_OVERLAY_OFFSET control code. User-mode drivers using
VCUser.lib send this control code by calling VC_SetOverlayOffset.

For more information about implementing the offset rectangle, see VC_SetOverlayOffset.

Support for a SetOverlayOffsetFunc function is required, if the device supports overlay and
panning of the source image. If a driver does support the function, it must place its address in the
VC_CALLBACK structure supplied by VCKernel.lib. If a driver that does not support a
SetOverlayOffsetFunc function receives an IOCTL_VIDC_OVERLAY_OFFSET control code,
VCKernel.lib sets the Win32 error code value to STATUS_INVALID_DEVICE_REQUEST.

See Also
SetOverlayRectsFunc

SetOverlayRectsFunc
BOOLEAN

SetOverlayRectsFunc(
 PDEVICE_INFO pDevInfo,
 POVERLAY_RECTS pOR
);

The SetOverlayRectsFunc function sets the overlay region. The function is provided by the
kernel-mode driver, and the SetOverlayRectsFunc name is a placeholder for a driver-specified
function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

SetOverlayRectsFunc
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 308 Windows NT DDK

pOR
Pointer to an OVERLAY_RECTS structure describing one or more overlay rectangles, using
screen coordinates.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DEVICE_CONFIGURATION_ERROR.

Comments
The VCKernel.lib library calls a kernel-mode driver's SetOverlayRectsFunc function when the
driver receives an IOCTL_VIDC_OVERLAY_RECTS control code. User-mode drivers using
VCUser.lib send this control code by calling VC_SetOverlayRect.

After the user-mode driver enables overlay by calling VC_Overlay, the kernel-mode driver should
display captured video source images inside the overlay area of the output display. (If the device
supports color keying, then the user-mode driver typically repaints the overlay area with the key
color when it receives a DVM_UPDATE message.)

Drivers for devices that support scaling generally do not scale the video source image to the
overlay area. Instead, scaling of the captured image is typically based on the capture format and
controlled by the ConfigFormatFunc function. Thus, the image might not fit into the overlay
rectangle. If the driver's SetOverlayOffsetFunc function has not been called to set an offset
rectangle, the driver should align the top left corner of the video source with the top left corner of
the overlay region. If the source rectangle is larger than the overlay rectangle, the driver should
crop the source as necessary at the bottom and right sides.

If a format has not been specified, the sample driver, bravado.sys, does scale the captured image
to the overlay rectangle, in order to support applications that only overlay the source image
without capturing frames.

Support for a SetOverlayRectsFunc function is required, if the device supports overlay. If a
driver does support the function, it must place its address in the VC_CALLBACK structure
supplied by VCKernel.lib. If a driver that does not support a SetOverlayRectsFunc function
receives an IOCTL_VIDC_OVERLAY_RECTS control code, VCKernel.lib sets the Win32 error
code value to STATUS_INVALID_DEVICE_REQUEST.

See Also
SetOverlayOffsetFunc

StreamFiniFunc
BOOLEAN

StreamFiniFunc(
 PDEVICE_INFO pDevInfo
);

The StreamFiniFunc function ends a streaming operation that was initiated by the
StreamInitFunc function. The function is provided by the kernel-mode driver, and the
StreamFiniFunc name is a placeholder for a driver-specified function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DRIVER_INTERNAL_ERROR.

Comments
The VCKernel.lib library calls a kernel-mode driver's StreamFiniFunc function when the driver

StreamFiniFunc
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 309 Windows NT DDK

receives an IOCTL_VIDC_STREAM_FINI control code. User-mode drivers using VCUser.lib send
this control code by calling VC_StreamFini.

You can assume that your driver's StreamStopFunc is called, and all pending buffers are
returned to the client, before the driver's StreamFiniFunc function is called. The
StreamFiniFunc function should be used to deallocate resources that were allocated by the
StreamInitFunc function. If the StreamFiniFunc function does not need to perform any
operations, it can just return TRUE.

Support for a StreamFiniFunc function is required, if the device and driver support capture
streams. If a driver does support the function, it must place its address in the VC_CALLBACK
structure supplied by VCKernel.lib. If a driver that does not support a StreamFiniFunc function
receives an IOCTL_VIDC_STREAM_FINI control code, VCKernel.lib sets the Win32 error code
value to STATUS_INVALID_DEVICE_REQUEST.

StreamGetPositionFunc
ULONG

StreamGetPositionFunc(
 PDEVICE_INFO pDevInfo
);

The StreamGetPositionFunc function returns the current position within the capture stream. The
function is provided by the kernel-mode driver, and the StreamGetPositionFunc name is a
placeholder for a driver-specified function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

Return Value
Returns the current stream position, in milliseconds. This is the time that has passed since
StreamStartFunc was called.

Comments
The VCKernel.lib library calls a kernel-mode driver's StreamGetPositionFunc function when the
driver receives an IOCTL_VIDC_GET_POSITION control code. User-mode drivers using
VCUser.lib send this control code by calling VC_GetStreamPos.

Support for a StreamGetPositionFunc function is required, if the device and driver support
capture streams. If a driver does support the function, it must place its address in the
VC_CALLBACK structure supplied by VCKernel.lib. If a driver that does not support a
StreamGetPositionFunc function receives an IOCTL_VIDC_GET_POSITION control code,
VCKernel.lib sets the Win32 error code value to STATUS_INVALID_DEVICE_REQUEST.

StreamInitFunc
BOOLEAN

StreamInitFunc(
 PDEVICE_INFO pDevInfo,
 ULONG FrameRate
);

The StreamInitFunc function initializes a video capture stream. The function is provided by the
kernel-mode driver, and the StreamInitFunc name is a placeholder for a driver-specified function
name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

StreamInitFunc
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 310 Windows NT DDK

FrameRate
Capture rate (microseconds per frame).

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DRIVER_INTERNAL_ERROR.

Comments
The VCKernel.lib library calls a kernel-mode driver's StreamInitFunc function when the driver
receives an IOCTL_VIDC_STREAM_INIT control code. User-mode drivers using VCUser.lib send
this control code by calling VC_StreamInit. You can assume VCKernel.lib will not call the
StreamInitFunc function if a stream has already been started.

The driver should store the frame rate so that it is accessible to the InterruptAcknowledge
function. It might also verify that it has received a format selection. In deciding which operations
to place in a driver's StreamInitFunc function and which to place in its StreamStartFunc
function, remember that StreamInitFunc is called once for each stream, which StreamStartFunc
can be called multiple times.

Support for a StreamInitFunc function is required, if the device and driver support capture
streams. If a driver does support the function, it must place its address in the VC_CALLBACK
structure supplied by VCKernel.lib. If a driver that does not support a StreamInitFunc function
receives an IOCTL_VIDC_STREAM_INIT control code, VCKernel.lib sets the Win32 error code
value to STATUS_INVALID_DEVICE_REQUEST.

StreamStartFunc
BOOLEAN

StreamStartFunc(
 PDEVICE_INFO pDevInfo
);

The StreamStartFunc function starts capturing frames for a capture stream. The function is
provided by the kernel-mode driver, and the StreamStartFunc name is a placeholder for a
driver-specified function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DRIVER_INTERNAL_ERROR.

Comments
The VCKernel.lib library calls a kernel-mode driver's StreamStartFunc function when the driver
receives an IOCTL_VIDC_STREAM_START control code. User-mode drivers using VCUser.lib
send this control code by calling VC_StreamStart. You can assume VCKernel.lib will not call the
StreamStartFunc function unless the driver's StreamInitFunc function has been previously
called.

The driver's StreamStartFunc function must reset the stream position to zero milliseconds. The
function must also enable interrupts. Once interrupts are enabled, the following events occur:

• When the device interrupts, VCKernel.lib's generic ISR is called, which in turn calls the driver's
InterruptAcknowledge function. If, based on the client-specified frame rate, it is time to
capture a frame, then VCKernel.lib's generic DPC function is queued.

• The I/O manager calls the generic DPC function, which dequeues one of the IRPs that was
queued when the user-mode driver called VC_StreamAddBuffer. Then the generic DPC
function calls the driver's CaptureService function, passing the buffer address.

StreamStartFunc
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 311 Windows NT DDK

• After the CaptureService function returns, VCKernel.lib's generic DPC function calls
IoCompleteRequest to return the buffer's IRP to the user-mode driver.

Support for a StreamStartFunc function is required, if the device and driver support capture
streams. If a driver does support the function, it must place its address in the VC_CALLBACK
structure supplied by VCKernel.lib. If a driver that does not provide a StreamStartFunc function
receives an IOCTL_VIDC_STREAM_START control code, VCKernel.lib sets the Win32 error
code value to STATUS_INVALID_DEVICE_REQUEST.

StreamStopFunc
BOOLEAN

StreamStopFunc(
 PDEVICE_INFO pDevInfo
);

The StreamStopFunc function stops capturing frames for a capture stream. The function is
provided by the kernel-mode driver, and the StreamStopFunc name is a placeholder for a
driver-specified function name.

Parameters
pDevInfo

Pointer to the DEVICE_INFO structure returned by VC_Init.

Return Value
Returns TRUE if the operation succeeds. Otherwise returns FALSE. If FALSE, VCKernel.lib sets
the Win32 error code value to STATUS_DRIVER_INTERNAL_ERROR.

Comments
The VCKernel.lib library calls a kernel-mode driver's StreamStopFunc function when the driver
receives an IOCTL_VIDC_STREAM_STOP control code. User-mode drivers using VCUser.lib
send this control code by calling VC_StreamStop. You can assume VCKernel.lib will not call the
StreamStopFunc function unless the driver's StreamInitFunc function has been previously
called.

The driver's StreamStopFunc function must stop the stream, typically by disabling device
interrupts.

Support for a StreamStopFunc function is required, if the device and driver support capture
streams. If a driver does support the function, it must place its address in the VC_CALLBACK
structure supplied by VCKernel.lib. If a driver that does not provide a StreamStopFunc function
receives an IOCTL_VIDC_STREAM_STOP control code, VCKernel.lib sets the Win32 error code
value to STATUS_INVALID_DEVICE_REQUEST.

Macros, Kernel-Mode Video Capture Drivers
This section describes the macros that are available to kernel-mode video capture drivers. They
are listed in alphabetic order and are defined in vckernel.h.

VC_ReadIOMemoryBlock
VC_ReadIOMemoryBlock(dst, src, cnt)

The VC_ReadIOMemoryBlock macro reads a specified number of bytes from a device's mapped
I/O memory space into system memory space.

Parameters
dst

Pointer to a buffer to receive data copied from mapped I/O space.
src

VC_ReadIOMemoryBlock
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 312 Windows NT DDK

Address of the first mapped I/O memory location from which data is to be copied.
cnt

Number of bytes to be copied from I/O space.

Return Value
None.

Comments
Kernel-mode video capture drivers typically use the VC_ReadIOMemoryBlock macro to read a
block of memory within the frame buffer. Drivers can obtain the frame buffer's base address by
calling VC_GetFrameBuffer.

Using the VC_ReadIOMemoryBlock macro to read I/O space helps ensure driver portability
across system platforms.

VC_ReadIOMemoryBYTE
VC_ReadIOMemoryBYTE(p)

The VC_ReadIOMemoryBYTE macro reads a single byte from a device's mapped I/O memory
space.

Parameters
p

Address of the mapped I/O memory location from which data is to be copied.

Return Value
Returns the byte value read from the specified memory address.

Comments
Kernel-mode video capture drivers typically use the VC_ReadIOMemoryBYTE macro to read a
location within the frame buffer. Drivers can obtain the frame buffer's base address by calling
VC_GetFrameBuffer.

Using the VC_ReadIOMemoryBYTE macro to read I/O space helps ensure driver portability
across system platforms.

VC_ReadIOMemoryULONG
VC_ReadIOMemoryULONG(p)

The VC_ReadIOMemoryULONG macro reads a single unsigned longword value from a device's
mapped I/O memory space.

Parameters
p

Address of the mapped I/O memory location from which data is to be copied.

Return Value
Returns the unsigned longword value read from the specified memory address.

Comments
Kernel-mode video capture drivers typically use the VC_ReadIOMemoryULONG macro to read a
location within the frame buffer. Drivers can obtain the frame buffer's base address by calling
VC_GetFrameBuffer.

Using the VC_ReadIOMemoryULONG macro to read I/O space helps ensure driver portability
across system platforms.

VC_ReadIOMemoryUSHORT

VC_ReadIOMemoryUSHORT
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 313 Windows NT DDK

VC_ReadIOMemoryUSHORT(p)

The VC_ReadIOMemoryUSHORT macro reads a single unsigned word value from a device's
mapped I/O memory space.

Parameters
p

Address of the mapped I/O memory location from which data is to be copied.

Return Value
Returns the unsigned word value read from the specified memory address.

Comments
Kernel-mode video capture drivers typically use the VC_ReadIOMemoryUSHORT macro to read
a location within the frame buffer. Drivers can obtain the frame buffer's base address by calling
VC_GetFrameBuffer.

Using the VC_ReadIOMemoryUSHORT macro to read I/O space helps ensure driver portability
across system platforms.

VC_WriteIOMemoryBlock
VC_WriteIOMemoryBlock(dst, src, cnt)

The VC_WriteIOMemoryBlock macro writes a specified number of bytes from system memory
space into a device's mapped I/O memory space.

Parameters
dst

Address of the first mapped I/O memory location into which data is to be copied.
src

Pointer to a buffer from which data is to be copied.
cnt

Number of bytes to be copied into I/O space.

Return Value
None.

Comments
Kernel-mode video capture drivers typically use the VC_WriteIOMemoryBlock macro to write a
block of memory within the frame buffer. Drivers can obtain the frame buffer's base address by
calling VC_GetFrameBuffer.

Using the VC_WriteIOMemoryBlock macro to write into I/O space helps ensure driver portability
across system platforms.

VC_WriteIOMemoryBYTE
VC_WriteIOMemoryBYTE(p, b)

The VC_WriteIOMemoryBYTE macro writes a single byte into a device's mapped I/O memory
space.

Parameters
p

Address of the mapped I/O memory location into which data is to be copied.
b

Byte value to be written.

Return Value

VC_WriteIOMemoryBYTE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 314 Windows NT DDK

None.

Comments
Kernel-mode video capture drivers typically use the VC_WriteIOMemoryBYTE macro to write
into a location within the frame buffer. Drivers can obtain the frame buffer's base address by
calling VC_GetFrameBuffer.

Using the VC_WriteIOMemoryBYTE macro to write into I/O space helps ensure driver portability
across system platforms.

VC_WriteIOMemoryULONG
VC_WriteIOMemoryULONG(p, l)

The VC_WriteIOMemoryULONG macro writes an unsigned longword into a device's mapped I/O
memory space.

Parameters
p

Address of the mapped I/O memory location into which data is to be copied.
l

Unsigned longword value to be written.

Return Value
None.

Comments
Kernel-mode video capture drivers typically use the VC_WriteIOMemoryULONG macro to write
into a location within the frame buffer. Drivers can obtain the frame buffer's base address by
calling VC_GetFrameBuffer.

Using the VC_WriteIOMemoryULONG macro to write into I/O space helps ensure driver
portability across system platforms.

VC_WriteIOMemoryUSHORT
VC_WriteIOMemoryUSHORT(p, w)

The VC_WriteIOMemoryUSHORT macro writes an unsigned word into a device's mapped I/O
memory space.

Parameters
p

Address of the mapped I/O memory location into which data is to be copied.
w

Unsigned word value to be written.

Return Value
None.

Comments
Kernel-mode video capture drivers typically use the VC_WriteIOMemoryUSHORT macro to write
into a location within the frame buffer. Drivers can obtain the frame buffer's base address by
calling VC_GetFrameBuffer.

Using the VC_WriteIOMemoryUSHORT macro to write into I/O space helps ensure driver
portability across system platforms.

Video Compression Manager Drivers
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 315 Windows NT DDK

Video Compression Manager Drivers
Video compression drivers provide low-level compression, decompression, and rendering
services. The algorithms used by these drivers can be hardware- or software-based. These
drivers are used for the following services:

• Compressing and decompressing data
• Rendering compressed data to the display
• Handling text and custom data.

The following topics describe the interface for these drivers:

• Writing video compression, decompression, and rendering drivers
• How a driver handles the system messages for the installable-driver interface
• How a driver handles messages specific to compressing, decompressing, and rendering data
• Alphabetic reference to the messages and data structures used to write compression,

decompression, and rendering drivers.

Compression Driver Architecture
Compression drivers are DLLs that compress or decompress video or other types of data in
response to requests from the system or applications. Applications never access the compression
driver directly. Instead, an application calls a corresponding Win32 compression function that
directs the system to send the request to the driver in the form of a message.

The typical compression driver combines both compression and decompression functions. When
a compression driver receives a request, it usually receives video or other data that needs to be
compressed or decompressed. The video data can be either still bitmaps or motion-video frames.
The driver typically receives compressed data from an application that has opened an AVI file;
the driver is expected to return the uncompressed data to the application. The driver typically
receives uncompressed data from a video source, such as a disk file or a video device.

Some compression drivers also write directly to the display or display driver. Such drivers, called
rendering drivers, can replace the display driver or take over some of the responsibilities of the
driver. These drivers handle a set of messages, the ICM_DRAW messages, in addition to the
decompression messages defined for the services that return the decompressed video to the
client application. Rendering drivers can reside in the same DLLs as compressors and
decompressors, or they can reside in a separate DLL.

The DriverProc Function, Compression Drivers
Compression drivers provide a DriverProc entry point to process messages related to requests
for video compression and decompression. The DriverProc function processes messages sent by
the system to the driver as the result of an application call to a video compression and
decompression function. For example, when an application opens a video compression and
decompression driver, the system sends the specified driver a DRV_OPEN message. The driver's
DriverProc function receives and processes this message. Your DriverProc function should
return ICERR_UNSUPPORTED for any messages that it does not handle.

Handling DRV_OPEN and DRV_CLOSE, Compression Drivers
Like other installable drivers, client applications must open a video compression and
decompression driver before using it, and close it when finished so the driver will be available to
other applications. When a driver receives an open request, it returns a value that the system will
use for dwDriverID sent with subsequent messages. When your driver receives other messages, it
can use this value to identify instance data needed for operation. Your drivers can use this data to

Handling DRV_OPEN and DRV_CLOSE, Installable Compression Drivers
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 316 Windows NT DDK

maintain information related to the client that opened the driver.

Compression and decompression drivers should support more than one client simultaneously. If
you support more than one client simultaneously, though, remember to check the dwDriverID
parameter to determine which client is being accessed.

If the driver is opened for configuration by the Drivers option of the Control Panel, lParam2
contains zero. When opened this way, your driver should respond to the DRV_CONFIGURE and
DRV_QUERYCONFIGURE messages.

If opened for compression or decompression services, lParam2 contains a pointer to an ICOPEN
data structure.

Compressor Configuration
Video compression and decompression drivers can receive a series of configuration messages.
System configuration messages are typically sent by the Drivers option of the Control Panel to
configure the hardware. Video compression- and decompression-specific configuration messages
are typically initiated by the client application or from dialog boxes displayed by your driver. Your
driver should use these messages to configure the driver.

Configuration Messages Sent by the System
Installable drivers can supply a configuration dialog box for users to access through the Drivers
option in the Control Panel. If your driver supports different options, it should allow user
configuration. Any hardware-related settings should be stored in the system registry in a section
having the same name as the driver.

Like other installable drivers, your driver will receive DRV_CONFIGURE and
DRV_QUERYCONFIGURE messages from the Drivers option of the Control Panel. If your driver
controls hardware that needs to be configured, it should return a nonzero value for the
DRV_QUERYCONFIGURE system message and display a hardware configuration dialog box for
the DRV_CONFIGURE system message.

Messages for Configuring the Driver State
The video compression-specific and decompression-specific configuration messages are typically
initiated by the client application or from dialog boxes displayed by your driver. Your driver should
use these messages to configure the driver.

If your driver is configurable, it should support the ICM_CONFIGURE message for driver
configuration. It should also use this message to set parameters for compression or
decompression. Any options the user selects in the dialog box displayed for ICM_CONFIGURE
should be saved as part of the state information referenced by the ICM_GETSTATE and
ICM_SETSTATE messages.

The ICM_GETSTATE and ICM_SETSTATE messages query and set the internal state of your
compression or decompression driver. State information is device dependent, and your driver
must define its own data structure for it. While the client application reserves a memory block for
the information, it will obtain the size needed for the memory block from your driver. If your driver
receives ICM_GETSTATE with a NULL pointer for dwParam1, the client application is requesting
that your driver return the size of its state information. Conversely, if your driver receives
ICM_GETSTATE with dwParam1 pointing to a block of memory, and dwParam2 specifying the
size of the memory block, the client application is requesting that your driver transfer the state
information to the memory block.

When your driver receives ICM_SETSTATE, with dwParam1 pointing to a block of memory and
dwParam2 specifying the size of the memory block, the client application is requesting that your
driver restore its configuration from the state information contained in the memory block. Before
setting the state, your driver should verify that the state information applies to your driver. One
technique for verifying the data is to reserve the first DWORD in the state data structure for the
four-character code used to identify your driver. If you set this DWORD for data returned for

Messages for Configuring the Driver State
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 317 Windows NT DDK

ICM_GETSTATE, you can use it to verify the data supplied with ICM_SETSTATE. If
ICM_SETSTATE has a NULL pointer for dwParam1, it indicates that your driver should return to
its default state.

State information should not contain any data that is absolutely required for data
decompressionany such data should be part of the format you return for the
ICM_DECOMPRESS_GET_FORMAT message.

Messages Used to Interrogate the Driver
The client application sends the ICM_ABOUT message to display your driver's About dialog box.
The client application sets dwParam1 to −1; the application is querying whether your driver
supports display of an About box. Your driver returns ICERR_OK if it does, and it returns
ICERR_UNSUPPORTED if it does not. Your driver should only display an About box if the client
application specifies a window handle in dwParam1. The window handle indicates the parent of
the dialog box.

The client application uses the ICM_GETINFO message to obtain a description of your driver.
Your driver should respond to this message by filling in the ICINFO structure it receives with the
message. The flags your driver sets in the structure tell the client application which capabilities
the driver supports. Your driver will not typically use the szDriver[128] member. This member is
used to specify the module that contains the driver. Set the flags corresponding to the capabilities
of your driver in the low-ordered word of the dwFlags member. You can use the high-ordered
word for driver-specific flags.

Configuration Messages for Compression Quality
For the video compression and decompression interface, quality is indicated by an integer in the
range of 0 to 10,000. A quality level of 7500 typically indicates an acceptable image quality. A
quality level of 0 typically indicates a very low quality level (possibly even a totally black image).
As the quality level moves from an acceptable level to low quality, the image might have a loss of
color as the colors in the color table are merged, or as the color resolution of each pixel
decreases. If your driver supports temporal compression (it needs information from the previous
frame to decompress the current frame), low and high quality might imply how much this type of
compression can degrade image quality. For example, your driver might limit the compression of
a high-quality image to preserve sharp detail and color fidelity. Conversely, your driver might
sacrifice these qualities to obtain very compressed output files.

If your driver supports quality values, it maps the values to its internal definitions used by the
compression algorithms. Thus, the definition of image quality will vary from driver to driver, and,
quite possibly, from compression algorithm to compression algorithm. Even though the values are
not definitive, your driver should support as many individual values as possible.

The client application obtains the capabilities for compression quality with the
ICM_GETDEFAULTQUALITY and ICM_GETQUALITY messages. If your driver supports quality
levels, it should respond to the ICM_GETDEFAULTQUALITY message by returning a value
between 0 and 10000 that corresponds to a good default quality level for your compressor. Your
driver should return the current quality level for the ICM_GETQUALITY message.

The client application sends the ICM_SETQUALITY message to set the quality level of your
driver. Your driver should pass the quality value directly to the compression routine.

If your driver supports quality levels, it should set the VIDCF_QUALITY flag when it responds to
the ICM_GETINFO message.

Configuration Messages for Key-Frame Rate and Buffer Queue
The client application uses the ICM_GETDEFAULTKEYFRAMERATE message to obtain the
driver's recommendation for the key-frame spacing for compressing data. (A key frame is a frame
in a video sequence that does not require information from a previous frame for decompression.)
If the client application does not specify another value, this value determines how frequently the
client application sends an uncompressed image to your driver with the

Configuration Messages for Key-Frame Rate and Buffer Queue
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 318 Windows NT DDK

ICCOMPRESS_KEYFRAME flag set. If your driver supports this option, it should specify the
key-frame rate in the DWORD pointed to by dwParam1 and return ICERR_OK. If it does not
support this option, return ICERR_UNSUPPORTED.

The client application uses ICM_GETBUFFERSWANTED to determine if your driver will maintain
a queue of buffers. Your driver might maintain a queue of buffers if it renders the decompressed
data and is designed to keep its hardware pipelines full. If your driver supports this option, it
should specify the number of buffers in the DWORD pointed to by dwParam1 and return
ICERR_OK. If it does not support this option, return ICERR_UNSUPPORTED.

Decompressing Video Data
The client application sends a series of messages to your driver to coordinate decompressing
video data. The coordination involves the following activities:

• Setting the driver state
• Specifying the input format and determining the decompression format
• Preparing to decompress video
• Decompressing the video
• Ending decompression

The following messages are used by video compression and decompression drivers for these
decompression activities.

Message Description
ICM_DECOMPRESSEX Decompresses a frame of data into a buffer

provided by the client application.
ICM_DECOMPRESSEX_BEGIN Prepares a driver for decompressing data.
ICM_DECOMPRESSEX_END Cleans up after decompressing.
ICM_DECOMPRESS_GET_FORMAT Obtains a suggestion for a good format for

the decompressed data.
ICM_DECOMPRESSEX_QUERY Determines if a driver can decompress a

specific input format.
ICM_DECOMPRESS_GET_PALETTE Returns the color table of the output data

structure.

The video decompressed with these messages is returned to the client application, which handles
the display of data. If you want your driver to control the video timing or directly update the
display, use the ICM_DRAW messages. If you return the decompressed video to the client
application, your driver can decompress data using either software or hardware with the
ICM_DECOMPRESS messages.

Restoring the Driver State
The client application restores the driver state by sending ICM_SETSTATE. The client application
recalls the state information from the 'strd' data chunk of the AVI file. (The information was
originally obtained with the ICM_GETSTATE message.) The client application does not validate
any data in the state information. It simply transfers the state information to your driver.

The client application sends the information to your driver in a buffer pointed to by dwParam1.
The size of the buffer is specified in dwParam2. The organization of the data in the buffer is driver
dependent. If dwParam1 is NULL, your driver should return to its default state.

Note All information required for decompressing the image data should be part of the format
data. Only optional compression parameters can be included with the state information.

Specifying the Input Format and Determining the Decompression Format

Specifying the Input Format and Determining the Decompression Format
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 319 Windows NT DDK

Depending on how the client application will use the decompressed data, it will send either
ICM_DECOMPRESS_GET_FORMAT or ICM_DECOMPRESSEX_QUERY to specify the input
format and determine the decompression format. The client application sends
ICM_DECOMPRESS_GET_FORMAT to have your driver suggest the decompressed format. The
client application sends ICM_DECOMPRESSEX_QUERY to determine if your driver supports a
format it is suggesting.

The ICM_DECOMPRESS_GET_FORMAT message sends a pointer to a BITMAPINFO data
structure in dwParam1. This structure specifies the format of the incoming compressed data. The
input format was obtained by the client application from the 'strf' chunk in the AVI file. While the
output format is specified by dwParam2, your driver must use the message to determine how the
parameter is defined.

If your driver receives ICM_DECOMPRESS_GET_FORMAT, both dwParam1 and dwParam2
point to BITMAPINFO data structures. The input format data is contained in the dwParam1
structure. Your driver should fill in the dwParam2 BITMAPINFO data structure with information
about the format it will use to decompress the data. If your driver can handle the format, return
the number of bytes used for the dwParam2 structure as the return value. If your driver cannot
handle the input format, or the input format from the 'strf' chunk is incorrect, your driver should
return ICERR_BADFORMAT to fail the message.

If you have format information in addition to that specified in the BITMAPINFOHEADER
structure, you can add it immediately after this structure. If you do this, update the biSize
member to specify the number of bytes used by the structure and your additional information. If a
color table is part of the BITMAPINFO information, it follows immediately after your additional
information. Return ICERR_OK when your driver has finished updating the data format.

If your driver receives ICM_DECOMPRESSEX_QUERY, dwParam1 points to an
ICDECOMPRESSEX data structure containing the input format data. If lpbiDst is NULL, your
decompression driver can use any output format. In this case, the client application is querying
whether your driver can decompress the input format, and the output format doesn't matter. If
lpbiDst points to a BITMAPINFO structure, the suggested format will be the native or best format
for the decompressed data. For example, if playback is on an 8-bit device, the client application
will suggest an 8-bit DIB.

If your driver supports the specified input and output format (which might also include stretching
the image according to the values specified for the xDst, yDst, dxDst, dyDst, xSrc, ySrc, dxSrc,
and dySrc members), or if it supports the specified input with NULL specified for lpbiDst, return
ICERR_OK to indicate the driver accepts the formats.

Your driver does not have to accept the formats suggested. If you fail the message by returning
ICERR_BADFORMAT, the client application suggests alternate formats until your driver accepts
one. If your driver exhausts the list of formats usually used, the client application requests a
format with ICM_DECOMPRESS_GET_FORMAT.

If you are decompressing to 8-bit data, your driver also receives the
ICM_DECOMPRESS_GET_PALETTE message. Your driver should add a color table to the
BITMAPINFO data structure and specify the number of palette entries in the biClrUsed member.
The space reserved for the color table is always 256 colors.

Preparing to Decompress Video
When the client application is ready, it sends the ICM_DECOMPRESSEX_BEGIN message to the
driver. The client application uses dwParam1 to point to an ICDECOMPRESSEX structure and
sets dwParam2 to its size. The lpbiSrc and lpbiDest members of the ICDECOMPRESSEX data
structure describe the input and output formats. If either of the formats is incorrect, your driver
should return ICERR_BADFORMAT. Your driver should create any tables and allocate any
memory that it needs to decompress data efficiently. When done, return ICERR_OK.

Decompressing the Video
The client application sends ICM_DECOMPRESSEX each time it has an image to decompress.

Decompressing the Video
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 320 Windows NT DDK

The client application uses the flags in the file index to ensure the initial frame in a
decompression sequence is a key frame.

The ICDECOMPRESSEX data structure specified in dwParam1 contains the decompression
parameters. The value specified in dwParam2 specifies the size of the structure.

The format of the input data is specified in a BITMAPINFOHEADER structure pointed to by
lpbiInput. The input data is in a buffer specified by lpInput. The lpbiOutput and lpOutput
members contain pointers to the format data and buffer used for the output data.

The client application sets the ICDECOMPRESS_HURRYUP flag in the dwFlags member to
direct your driver to decompress the data at a faster rate. The ICDECOMPRESS_PREROLL flag
indicates the client application is sending frames in advance of a frame that will actually be
displayed. The client application will not display any data decompressed with these flags. This
might let your driver avoid decompressing a frame or data, or let it minimally decompress when it
needs information from this frame to prepare for decompressing a following frame.

The ICDECOMPRESS_UPDATE flag indicates the client application has specified that the screen
be updated.

The ICDECOMPRESS_NULLFRAME flag indicates the frame does not have any data.

The ICDECOMPRESS_NOTKEYFRAME flag indicates the frame is not a key frame.

Ending Decompression
Your driver receives ICM_DECOMPRESSEX_END when the client application no longer needs
data decompressed. For this message, your driver should free the resources it allocated for the
ICM_DECOMPRESSEX_BEGIN message.

Other Messages Received During Decompression
Decompression drivers also receive the ICM_DRAW_START and ICM_DRAW_STOP messages.
These messages tell the driver when the client application starts and stops drawing the images.
Most decompression drivers can ignore these messages.

Supporting the ICM_DECOMPRESS and ICM_DECOMPRESSEX Messages
The ICM_DECOMPRESSEX messages replace the ICM_DECOMPRESS messages and add
extended decompression capabilities. These messages let drivers decompress images described
with source and destination rectangles.

The ICM_DECOMPRESSEX messages serve the same purpose as the ICM_DECOMPRESS,
ICM_DECOMPRESS_BEGIN, ICM_DECOMPRESS_END, and ICM_DECOMPRESS_QUERY
messages, except that the ICM_DECOMPRESSEX messages use the ICDECOMPRESSEX
structure. This structure contains the image input format and data, the output format and data, the
source rectangle, and the destination rectangle. For compatibility, your driver should support the
ICM_DECOMPRESS messages as well as the ICM_DECOMPRESSEX messages.

The ICM_DECOMPRESSEX messages also let applications decompress to a frame buffer under
the following conditions:

• The decompressor supports a frame buffer.
• MSVideo can access the frame buffer.
• The decompressor supports decompression to the format of the frame buffer (for example, it

supports the correct bit depth and it can handle upside-down formats).

• The palette must be an identity palette if the device uses 8-bit color depth.
• The decompressor must support 48-bit pointers if the linear frame buffer is simulated with a

banked display card. MSVideo sets the biCompression member of the
BITMAPINFOHEADER structure to 1632 when the decompressor needs to use 48-bit pointers
to access the image.

Compressing Video Data
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 321 Windows NT DDK

Compressing Video Data
When used to compress video data, your driver receives a series of messages, similar to
decompressing data. The client application sends messages to your driver to coordinate the
following activities:

• Obtaining the driver state
• Specifying the input format and determining the compression format
• Preparing to compress video
• Compressing the video
• Ending compression

The following messages are used by video compression drivers.

Message Description
ICM_COMPRESS Compresses a frame of data into the buffer

provided by the client application.
ICM_COMPRESS_BEGIN Prepares for compressing data.
ICM_COMPRESS_END Cleans up after compressing.
ICM_COMPRESS_GET_FORMAT Obtains the driver's suggested output format of the

compressed data.
ICM_COMPRESS_GET_SIZE Obtains the maximum size of one frame of data

when it is compressed in the output format.
ICM_COMPRESS_QUERY Determines if a driver can compress a specific

input format.

The video compressed with these messages is returned to the client application. When
compressing data, your driver can use either software or hardware to do the compression.

Note When MSVideo recompresses a file, each frame is decompressed to a full frame before it
is passed to the compressor.

Obtaining the Driver State
The client application obtains the driver state by sending ICM_GETSTATE. The client application
determines the size of the buffer needed for the state information by sending this message with
dwParam1 set to NULL. Your driver should respond to the message by returning the size of the
buffer it needs for state information.

After it determines the buffer size, the client application resends the message with dwParam1
pointing to a block of memory it allocated. The dwParam2 parameter specifies the size of the
memory block. Your driver should respond by filling the memory with its state information. If your
driver uses state information, include only optional decompression parameters with the state
information. State information typically includes the setup specified by the user in the dialog box
resulting from an ICM_CONFIGURE message. Any information required for decompressing the
image data must be included with the format data. When done, your driver should return the size
of the state information.

The client application does not validate any data in the state information. It simply stores the state
information in the 'strd' data chunk of the AVI file.

Specifying the Input Format and Determining the Compression Format
The client application uses the ICM_COMPRESS_GET_FORMAT or ICM_COMPRESS_QUERY
message to specify the input format and determine the compression (output) format. The client
application sends ICM_COMPRESS_GET_FORMAT to have your driver suggest the compressed
format. The client application sends ICM_COMPRESS_QUERY to determine if your driver
supports a format it is suggesting.

Specifying the Input Format and Determining the Compression Format
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 322 Windows NT DDK

Both messages have a pointer to a BITMAPINFO data structure in dwParam1. This structure
specifies the format of the incoming uncompressed data. The contents of dwParam2 depend on
the message.

To have your driver suggest the format, the client application determines the size of the buffer
needed for the compressed data format by sending ICM_COMPRESS_GET_FORMAT. When
requesting the buffer size, the client application uses dwParam1 to point to a BITMAPINFO
structure and sets dwParam2 to NULL. Based on the input format, your driver should return the
number of bytes needed for the format buffer. Return a buffer size at least large enough to hold a
BITMAPINFOHEADER data structure and a color table.

The client application gets the output format by sending ICM_COMPRESS_GET_FORMAT with
valid pointers to BITMAPINFO structures in both dwParam1 and dwParam2. Your driver should
return the output format in the buffer pointed to by dwParam2. If your driver can produce multiple
formats, the format selected by your driver should be the one that preserves the greatest amount
of information rather than one that compresses to the most compact size. This will preserve
image quality if the video data is later edited and recompressed.

The output format data becomes the 'strf' chunk in the AVI RIFF file. The data must start out like
a BITMAPINFOHEADER data structure. You can include any additional information required to
decompress the file after the BITMAPINFOHEADER data structure. A color table (if used) follows
this information.

If you have format data following the BITMAPINFOHEADER structure, update the biSize
member to specify the number of bytes used by the structure and your additional data. If a color
table is part of the BITMAPINFO information, it follows immediately after your additional
information.

If your driver cannot handle the input format, it returns ICMERR_BADFORMAT to fail the
message.

If your driver receives ICM_COMPRESS_QUERY, the dwParam1 parameter points to a
BITMAPINFO data structure containing the input format data. The dwParam2 parameter will
either be NULL or contain a pointer to a BITMAPINFO structure describing the compressed
format specified by the client application. If dwParam2 is NULL, your compression driver can use
any output format. (The client application is just querying whether your driver can handle the
input.) If dwParam2 points to a BITMAPINFO structure, the client application is suggesting the
output format.

If your driver supports the specified input and output format, or it supports the specified input with
NULL specified for dwParam2, return ICERR_OK to indicate the driver accepts the formats. Your
driver does not have to accept the suggested format. If you fail the message by returning
ICERR_BADFORMAT, the client application suggests alternate formats until your driver accepts
one. If your driver exhausts the list of formats typically used, the client application requests a
format with ICM_COMPRESS_GET_FORMAT.

Initialization for the Compression Sequence
When the client application is ready to start compressing data, it sends the
ICM_COMPRESS_BEGIN message. The client application uses dwParam1 to point to the format
of the data being compressed, and uses dwParam2 to point to the format for the compressed
data. If your driver cannot handle the formats, or if they are incorrect, your driver should return
ICERR_BADFORMAT to fail the message.

Before the client application starts compressing data, it sends ICM_COMPRESS_GET_SIZE. For
this message, the client application uses dwParam1 to point to the input format and uses
dwParam2 to point to the output format. Your driver should return the worst-case size (in bytes)
that it expects a compressed frame to occupy. The client application uses this size value when it
allocates buffers for the compressed video frame.

Client applications might send the ICM_COMPRESS_FRAMES_INFO message to set the
compression parameters. The dwParam1 parameter specifies a pointer to an

Initialization for the Compression Sequence
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 323 Windows NT DDK

ICCOMPRESSFRAMES structure. For this message, the GetData and PutData members are not
used. The dwParam2 parameter specifies the size of the structure. A compressor can use this
message to make decisions about the amount of space allocated for each frame while
compressing.

Compressing the Video
The client application sends ICM_COMPRESS for each frame it wants compressed. It uses
dwParam1 to point to an ICCOMPRESS structure containing the parameters used for
compression. Your driver uses the buffers pointed to by the members of ICCOMPRESS for
returning information about the compressed data.

Your driver returns the actual size of the compressed data in the biSizeImage member in the
BITMAPINFOHEADER data structure pointed to by the lpbiOutput member of ICCOMPRESS.

The format of the input data is specified in a BITMAPINFOHEADER structure pointed to by
lpbiInput. The input data is in a buffer specified by lpInput. The lpbiOutput and lpOutput
members contain pointers to the format data and buffer used for the output data. Your driver must
indicate the size of the compressed video data in the biSizeImage member in the BITMAPINFO
structure specified for lpbiOutput.

The dwFlags member specifies flags used for compression. The client application sets the
ICCOMPRESS_KEYFRAME flag if the input data should be treated as a key frame. (A key frame
is one that does not require data from a previous frame for decompression.) When this flag is set,
your driver should treat the image as the initial image in a sequence.

The lpckid member specifies a pointer to a buffer used to return the chunk ID for data in the AVI
file. Your driver should assign a two-character code for the chunk ID only if it uses a custom
chunk ID.

The lpdwFlags member specifies a pointer to a buffer used to return flags for the AVI index. The
client application will add the returned flags to the file index for this chunk. If the compressed
frame is a key frame (a frame that does not require a previous frame for decompression), your
driver should set the AVIIF_KEYFRAME flag in this member. Your driver can define its own flags,
but they must be set in the high word only.

The lFrameNum member specifies the frame number of the frame to compress. If your driver is
performing fast temporal compression, check this member to see if frames are being sent out of
order or if the client application is having a frame recompressed.

The dwFrameSize member indicates the maximum size (in bytes) for the compressed frame. If it
specifies zero, your driver determines the size of the compressed image. If it is nonzero, your
driver should try to compress the frame to within the specified size. This might require your driver
to sacrifice image quality (or make some other trade-off) to obtain the size goal. Your driver
should support this if it sets the VIDCF_CRUNCH flag when it responds to the ICM_GETINFO
message.

The dwQuality member specifies the compression quality. Your driver should support this if it
sets the VIDCF_QUALITY flag when it responds to the ICM_GETINFO message.

The format of the previous data is specified in a BITMAPINFOHEADER structure pointed to by
lpbiPrev. The input data is in a buffer specified by lpPrev. Your driver will use this information if
it performs temporal compression (that is, it needs the previous frame to compress the current
frame). If your driver supports temporal compression, it should set the VIDCF_TEMPORAL flag
when it responds to the ICM_GETINFO message. If your driver supports temporal compression
and does not need the information in the lpbiPrev and lpPrev members, it should set the
VIDCF_FASTTEMPORALC flag when it responds to the ICM_GETINFO message. The
VIDCF_FASTEMPORALC flag can decrease the processing time because your driver does not
need to access data specified in lpbiPrev and lpPrev.

When your driver has finished compressing the data, it returns ICERR_OK.

Ending Compression

Ending Compression
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 324 Windows NT DDK

Your driver receives ICM_COMPRESS_END when the client application no longer needs data
compressed, or when the client application is changing the format or palette. After sending
ICM_COMPRESS_END, the client application must send ICM_COMPRESS_BEGIN to continue
compressing data. The client application does not need to send an ICM_COMPRESS_END
message for each ICM_COMPRESS_BEGIN message. It can send ICM_COMPRESS_BEGIN to
restart compression without sending ICM_COMPRESS_END.

When the driver is no longer needed, the system closes it by sending DRV_CLOSE.

Rendering Directly to Video Hardware
Drivers that can render video directly to hardware should support the ICM_DRAW messages in
addition to the ICM_DECOMPRESS messages. The ICM_DRAW messages render data directly
to hardware rather than into a data buffer returned to the client application by the decompression
driver.

Your driver receives a series of messages from the client application to coordinate the following
activities to render a video sequence:

• Setting the driver state
• Specifying the input format
• Preparing to decompress video
• Decompressing the video
• Ending decompression

The following ICM_DRAW messages are used by renderers for these decompression activities.

Message Description
ICM_DRAW Decompresses a frame of data and draws it.
ICM_DRAW_BEGIN Prepares to draw data.
ICM_DRAW_END Cleans up after decompressing an image to the

screen.
ICM_DRAW_REALIZE Realizes a palette.
ICM_DRAW_QUERY Determines if the driver can render data in a

specific format.
ICM_DRAW_SUGGESTFORMAT Has the driver suggest an output format.

The video decompressed with the ICM_DRAW messages is retained by your driver, which
handles the display of data. These messages control only the decompression process. The
messages used to control the drawing are described separately. Your driver will receive the
ICM_DRAW messages only if it sets the VIDCF_DRAW flag when it responds to the
ICM_GETINFO message.

Setting the Driver State
The client application restores the driver state by sending ICM_SETSTATE. The process for
handling this message is the same as for the ICM_DECOMPRESS messages.

Specifying the Input and Output Formats
Because your driver handles the drawing of video, the client application does not need to
determine the output format. The client application must only determine if your driver can handle
the input format. It sends ICM_DRAW_QUERY to determine if your driver supports the input
format. The input format is specified with a pointer to a BITMAPINFO data structure in
dwParam1. The dwParam2 parameter is not used.

If your driver supports the specified input format, return ICERR_OK to indicate the driver accepts
the format. If your driver does not support the format, return ICERR_BADFORMAT.

Suggesting the Output Format
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 325 Windows NT DDK

Suggesting the Output Format
Your driver might also receive the ICM_DRAW_SUGGESTFORMAT message. Typically, this
message is sent by the decompression portion of a driver to the drawing portion of a driver to
obtain the best decompressed format for the data when the drawing portion can handle several
formats. The dwParam1 parameter of ICM_DRAW_SUGGESTFORMAT points to an
ICDRAWSUGGEST structure and the dwParam2 parameter specifies its size.

The lpbiIn member specifies a pointer to the structure containing the compressed input format.
The lpbiSuggest member specifies a pointer to a buffer used to return the suggested output
format.

The dxSrc, dySrc, dxDst, and dyDst members specify the width and height of the source and
destination rectangles.

If returning format information, return ICERR_OK. If the lpbiSuggest member is NULL, return
the amount of memory required for the suggested output format structure.

Preparing to Draw Data
When the client application is ready, it sends the ICM_DRAW_BEGIN message to the driver to
prepare the driver for decompressing the stream. Your driver should create any tables and
allocate any memory that it needs to decompress data efficiently.

The client application sets dwParam1 to the ICDRAWBEGIN data structure. The size of this
structure is contained in dwParam2. If the ICDRAW_QUERY flag is set in the dwFlags member,
the client application is interrogating your driver to determine if can decompress the data with the
parameters specified in the ICDRAWBEGIN data structure. Your driver should return
ICM_ERR_OK if it can accept the parameters. It should return ICM_ERR_NOTSUPPORTED if it
does not accept them.

When the ICDRAW_QUERY flag is set, ICM_DRAW_BEGIN will not be paired with
ICM_DRAW_END. Your driver will receive another ICM_DRAW_BEGIN message without this
flag to start the actual decompression sequence.

Your driver can ignore the palette handle specified in the hpal member.

The hwnd and hdc members specify the handle of the window and DC used for drawing. These
members are valid only if the ICDRAW_HDC flag is set in the dwFlags member.

The xDst and yDst members specify the x- and y-position of the upper-right corner of the
destination rectangle. (This is relative to the current window or display context.) The dxDst and
dyDst members specify the width and height of the destination rectangle. These members are
valid only if the ICDRAW_HDC flag is set. The ICDRAW_FULLSCREEN flag indicates the entire
screen should be used for display and overrides any values specified for these members.

The xSrc, ySrc, dxSrc, and dySrc members specify a source rectangle used to clip the frames of
the video sequence. The source rectangle is stretched to fill the destination rectangle. The xSrc
and ySrc members specify the x- and y-position of the upper-right corner of the source rectangle.
(This is relative to a full-frame image of the video.) The dxSrc and dySrc members specify the
width and height of the source rectangle.

Your driver should stretch the image from the source rectangle to fit the destination rectangle. If
the client application changes the size of the source and destination rectangles, it will send the
ICM_DRAW_END message and specify new rectangles with a new ICM_DRAW_BEGIN
message. For more information about handling the source and destination rectangles, see the
StretchDIBits function.

The lpbi member specifies a pointer to a BITMAPINFOHEADER data structure containing the
input format.

The dwRate member specifies the decompression rate in an integer format. To obtain the rate in
frames-per-second, divide this value by the value in dwScale. Your driver uses these values when
it handles the ICM_DRAW_START message.

Preparing to Draw Data
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 326 Windows NT DDK

If your driver can decompress the data with the parameters specified in the ICDRAWBEGIN data
structure, your driver should return ICERR_OK and allocate any resources it needs to efficiently
decompress the data. If your driver cannot decompress the data with the parameters specified,
your driver should fail the message by returning ICERR_NOTSUPPORTED. When this message
fails, your driver does not receive an ICM_DRAW_END message, so it should not prepare its
resources for other ICM_DRAW messages.

Drawing the Data
The client application sends ICM_DRAW each time it has data to decompress. (Your driver
should use this message to decompress data. It should wait for the ICM_DRAW_START message
before it begins to render the data.) The client application uses the flags in the file index to ensure
the first frame in a series of decompressed frames starts with a key-frame boundary. Your driver
must allocate the memory it needs for the decompressed data.

The ICDRAW data structure specified in dwParam1 contains the decompression parameters. The
value specified in dwParam2 specifies the size of the structure. The format of the input data is
specified in a BITMAPINFOHEADER structure pointed to by lpFormat. The input data is in a
buffer specified by lpData. The number of bytes in the input buffer is specified by cbData.

The client application sets the ICDRAW_HURRYUP flag in the dwFlags member to direct your
driver to decompress data at a faster rate. For example, the client application might use this flag
when the video is starting to lag behind the audio. If your driver cannot speed up its
decompression and rendering performance, it might be necessary to avoid rendering a frame of
data. The client application sets the ICDRAW_UPDATE flag and sets lpData to NULL to have
your driver update the screen based on data previously received.

The client application sets the ICDRAW_PREROLL flag if it is sending data in advance of the
data to be rendered. For example, if the client application will display frame 10 of a compressed
sequence, it sets this flag for the first 9 frames. This sends the key frame and other intermediate
frames to the driver so it can decompress the tenth frame.

The client application sets the ICDRAW_UPDATE flag to have the driver refresh the screen.

The ICDRAW_NOTKEYFRAME flag indicates the data is not a key frame.

The ICDRAW_NULLFRAME flag indicates the previous frame should be repeated.

When your driver has finished decompressing the data, it returns ICERR_OK. After the driver
returns from this message, the client application deallocates or reuses the memory containing the
format and image data. If your driver needs the format or image data for future use, it should
copy the data it needs before it returns from the message.

Ending Drawing
Your driver receives ICM_DRAW_END when the client application no longer needs data
decompressed or rendered. For this message, your driver should free the resources it allocated
for the ICM_DRAW_BEGIN message. Your driver should also leave the display in the full-screen
mode.

After sending ICM_DRAW_END, the client application must send ICM_DRAW_BEGIN to
continue decompressing data. The client application does not have to send an ICM_DRAW_END
message for each ICM_DRAW_BEGIN message. The client application can use
ICM_DRAW_BEGIN to restart decompression without sending ICM_DRAW_END.

Rendering the Data
The client application sends the following messages to control the driver's internal clock for
rendering the decompressed data.

Message Description
ICM_DRAW_GETTIME Obtains the value of the driver's internal clock if it is

handling the timing of drawing frames.

Rendering the Data
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 327 Windows NT DDK

ICM_DRAW_SETTIME Sets the driver's internal clock if it is handling the
timing of drawing frames.

ICM_DRAW_START Starts the internal clock of a driver if it handles the
timing of drawing frames.

ICM_DRAW_STOP Stops the internal clock of a driver if it handles the
timing of drawing frames.

ICM_DRAW_WINDOW Informs the driver the display window has been
moved, hidden, or displayed.

ICM_DRAW_FLUSH Flushes any frames that are waiting to be drawn.
ICM_DRAW_RENDERBUFFER Draws a frame waiting to be drawn.
ICM_DRAW_CHANGEPALETTE Changes the palette.

The client application sends ICM_DRAW_START to have your driver start (or continue) rendering
data at the rate specified by the ICM_DRAW_BEGIN message. The ICM_DRAW_STOP message
pauses the internal clock. Neither of these messages use dwParam1, dwParam2, or a return
value.

The client application uses ICM_DRAW_GETTIME to obtain the value of the internal clock. Your
driver returns the current-time value (this is usually frame numbers for video) in the DWORD
pointed to by dwParam1. The current time is relative to the start of drawing.

The client application uses ICM_DRAW_SETTIME to set the value of the internal clock. Typically,
the client application uses this message to synchronize the driver's clock to an external clock.
Your driver should set its clock to the value (this is usually frame numbers for video) specified in
the DWORD pointed to by dwParam1.

The client application sends ICM_DRAW_FLUSH to have your driver discard any frames that
have not been drawn.

The client application sends ICM_DRAW_RENDERBUFFER to have your driver draw the image
currently buffered.

The client application sends ICM_DRAW_CHANGEPALETTE when the palette changes in the
movie.

Notifying Applications of Compression and Decompression
Status
A client application sends the ICM_SET_STATUS_PROC message to receive notification
messages about the progress of compression or decompression. When received, drivers should
periodically send notification messages to the callback function specified with the message during
compression or decompression. Support of this function is optional but highly recommended if
compression or decompression takes longer than approximately one tenth of one second.

The dwParam1 parameter of the message specifies a pointer to an ICSETSTATUSPROC
structure and dwParam2 specifies the size of the ICSETSTATUSPROC data structure. The
lParam member specifies a constant passed to the status procedure when it is called. The
fpfnStatus member specifies a pointer to the status function. This is NULL if status messages
should not be sent. The status function has the following prototype:

LONG MyStatusProc(LPARAM lParam, UINT message)

The lParam parameter specifies the constant specified in the lParam member of the
ICSETSTATUSPROC structure. The message parameter specifies one of the following messages
the driver sends.

Message Description
ICSTATUS_START Indicates the operation is starting.
ICSTATUS_STATUS Indicates the operation is proceeding, and is l percent done.

Notifying Applications of Compression and Decompression Status
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 328 Windows NT DDK

ICSTATUS_END Indicates the operation is finishing.
ICSTATUS_YIELD Indicates a length operation is proceeding.

Using Installable Compressors for Nonvideo Data
Installable compressors are not necessarily limited to video data. By using a different value than
'vidc' in the fccType member, you can specify that your installable driver expects to handle a type
of data that is not video. Four-character codes for nonvideo data should also be registered.

While VidEdit does not support data that is not audio or video, MCIAVI does provide limited
support for other data types, using installable renderers. If you create a stream with a
four-character code type that does not represent audio or video, its type and handler information
are used to search for a driver capable of handling the data. The search follows the same
procedure used for installable compressor drivers.

Writing a driver to render nonvideo data is very similar to rendering video, with the following
differences:

• The format used is not a BITMAPINFO structure. The format is defined by the class of
decompressor.

• The ICM_DECOMPRESS messages are not used. All data is rendered using the ICM_DRAW
messages because there is no defined decompressed form for arbitrary data.

Testing Video Compression and Decompression Drivers
You can exercise both the compression and decompression capabilities of a driver with the
VidEdit editing tool. You can also exercise the decompression capabilities of a driver with
MCIAVI. (One way to test the decompression capabilities is to preview an unedited file in VidEdit.
In this case, VidEdit uses MCIAVI to decompress the file.)

Messages, Compression Drivers
The following topics describe‹This section describes› the messages used by compression drivers.

ICM_ABOUT
The ICM_ABOUT message is sent to a video compression driver to display its About dialog box.

Parameters
dwParam1

Specifies a handle to a window (HWND) that should correspond to the parent of the displayed
dialog box.

If dwParam1 is −1, the driver returns ICERR_OK if it has an About dialog box but it should not
display the dialog box. The driver returns ICERR_UNSUPPORTED if it does not display a
dialog box.

dwParam2
Not used.

Return Value
Returns ICERR_OK if the driver supports this message. Otherwise, returns
ICERR_UNSUPPORTED.

ICM_COMPRESS
The ICM_COMPRESS message is sent to a video compression driver to compress a frame of
data into an application-supplied buffer.

ICM_COMPRESS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 329 Windows NT DDK

Parameters
dwParam1

Specifies a pointer to an ICCOMPRESS data structure. The following members of
ICCOMPRESS specify the compression parameters:
The lpbiInput member contains the format of the uncompressed data; the data itself is in a
buffer pointed to by lpInput.
The lpbiOutput member contains a pointer to the output (compressed) format, and lpOutput
contains a pointer to a buffer used for the compressed data.
The lpbiPrev member contains a pointer to the format of the previous frame, and lpPrev
contains a pointer to a buffer used for the previous data. These members are used by drivers
that do temporal compression.
The driver should use the biSizeImage member of the BITMAPINFOHEADER structure
associated with lpbiOutput to return the size of the compressed frame.
The lpckid member points to a DWORD. If the pointer is not NULL, the driver should specify a
two-character code for the chunk ID in the DWORD. The chunk ID should correspond to the
chunk ID used in the AVI file.
The lpdwFlags member points to a DWORD. The driver should fill the DWORD with the flags
that should go in the AVI index. In particular, if the returned frame is a key frame, your driver
should set the AVIIF_KEYFRAME flag.
The dwFrameSize member contains the size into which the compressor should try to make the
frame fit. The size value is used for compression methods that can make tradeoffs between
compressed image size and image quality.
The dwQuality member contains the specific quality the compressor should use, if it supports
quality.

dwParam2
Specifies the size of the ICCOMPRESS structure.

Return Value
Returns ICERR_OK if successful. Otherwise, returns an error number.

ICM_COMPRESS_BEGIN
The ICM_COMPRESS_BEGIN message is sent to a video compression driver to prepare it for
compressing data.

Parameters
dwParam1

Specifies a pointer to a BITMAPINFO data structure indicating the input format.
dwParam2

Specifies a pointer to a BITMAPINFO data structure indicating the output format.

Return Value
Returns ICERR_OK if the specified compression is supported. Otherwise, returns
ICERR_BADFORMAT if the input or output format is not supported.

Comments
The driver should set up any tables or memory that it needs to compress the data formats
efficiently when it receives the ICM_COMPRESS message.

The ICM_COMPRESS_BEGIN and ICM_COMPRESS_END messages do not nest. If your driver
receives an ICM_COMPRESS_BEGIN message before compression is stopped with
ICM_COMPRESS_END, it should restart compression with new parameters.

ICM_COMPRESS_END
The ICM_COMPRESS_END message is sent to a video compression driver to end compression.

ICM_COMPRESS_END
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 330 Windows NT DDK

The driver should clean up after compressing and release any memory allocated for
ICM_COMPRESS_BEGIN.

Parameters
dwParam1

Not used.
dwParam2

Not used.

Return Value
Returns ICERR_OK if successful. Otherwise, returns an error number.

Comments
The ICM_COMPRESS_BEGIN and ICM_COMPRESS_END messages do not nest. If your driver
receives an ICM_COMPRESS_BEGIN message before compression is stopped with
ICM_COMPRESS_END, it should restart compression with new parameters.

ICM_COMPRESS_FRAMES_INFO
The ICM_COMPRESS_FRAMES_INFO message is sent to a compression driver to set the
parameters for the pending compression.

Parameters
dwParam1

Specifies a pointer to an ICCOMPRESSFRAMES structure. For this message, the GetData
and PutData members are not used.

dwParam2
Specifies the size of the structure pointed to by dwParam1.

Return Value
Returns ICERR_OK if successful.

Comments
A compressor can use this message to make decisions about the amount of space allocated for
each frame while compressing.

ICM_COMPRESS_GET_FORMAT
The ICM_COMPRESS_GET_FORMAT message is sent to a video compression driver to obtain
the output format of the compressed data.

Parameters
dwParam1

Specifies a pointer to a BITMAPINFO data structure indicating the input format.
dwParam2

Specifies zero or a pointer to a BITMAPINFO data structure used to return the output format.

Return Value
If dwParam2 is zero, the driver returns the size of the output format. If dwParam2 is not zero, the
driver returns a status value (either ICERROR_OK or an error status).

Comments
If dwParam2 is zero, the driver should only return the size of the output format.

If dwParam2 is nonzero, the driver should fill the BITMAPINFO data structure with the default
output format corresponding to the input format specified for dwParam1. If the compressor can
produce several formats, the default format should be the one that preserves the greatest amount
of information.

ICM_COMPRESS_GET_FORMAT
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 331 Windows NT DDK

For example, the Microsoft Video Compressor can compress 16-bit data into either an 8-bit
palettized compressed form or a 16-bit true-color compressed form. The 16-bit format more
accurately represents the original data, and thus is returned for this message.

ICM_COMPRESS_GET_SIZE
The ICM_COMPRESS_GET_SIZE message is sent to a video compression driver to obtain the
maximum size of one frame of data when it is compressed in the output format.

Parameters
dwParam1

Specifies a pointer to a BITMAPINFO data structure indicating the input format.
dwParam2

Specifies a pointer to a BITMAPINFO data structure indicating the output format.

Return Value
Returns the maximum number of bytes a single compressed frame can occupy.

Comments
Typically, applications send this message to determine how large a buffer to allocate for the
compressed frame.

The driver should calculate the size of the largest possible frame based on the input and target
formats.

ICM_COMPRESS_QUERY
The ICM_COMPRESS_QUERY message is sent to a video compression driver to determine if it
can compress a specific input format, or if it can compress the input format to a specific output
format.

Parameters
dwParam1

Specifies a pointer to a BITMAPINFO data structure describing the input format.
dwParam2

Specifies a pointer to a BITMAPINFO data structure describing the output format, or zero. Zero
indicates any output format is acceptable.

Return Value
Returns ICERR_OK if the specified compression is supported. Otherwise, returns
ICERR_BADFORMAT, indicating that the input or output format is not supported.

Comments
On receiving this message, the driver should examine the BITMAPINFO structure associated with
dwParam1 to see if it can compress the input format. The driver should return ICERR_OK only if
it can compress the input format to the output format specified for dwParam2. (If any output
format is acceptable, dwParam2 is zero.)

ICM_CONFIGURE
The ICM_CONFIGURE message is sent to a video compression driver to display its configuration
dialog box.

Parameters
dwParam1

Specifies a handle to a window (HWND) that should correspond to parent of the displayed
dialog box.

ICM_CONFIGURE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 332 Windows NT DDK

not display the dialog box. The driver returns ICERR_UNSUPPORTED if it does not display a
dialog box.

dwParam2
Not used.

Return Value
Returns ICERR_OK if the driver supports this message. Otherwise, returns
ICERR_UNSUPPORTED.

Comments
This message is distinct from the DRV_CONFIGURE message used for hardware configuration.
The dialog box for this message should let the user configure the internal state referenced by
ICM_GETSTATE and ICM_SETSTATE. For example, this dialog box might let the user change
parameters affecting the quality level and other similar compression options.

ICM_DECOMPRESS
The ICM_DECOMPRESS message is sent to a video compression driver to decompress a frame
of data into an application-supplied buffer.

Parameters
dwParam1

Specifies a pointer to an ICDECOMPRESS structure.
dwParam2

Specifies the size of the ICDECOMPRESS structure.

Return Value
Returns ICERR_OK if successful. Otherwise, returns an error number.

Comments
If the driver is to decompress data directly to the screen instead of a buffer, it receives the
ICM_DRAW message.

The driver should return an error if this message is received before the
ICM_DECOMPRESS_BEGIN message.

ICM_DECOMPRESS_BEGIN
The ICM_DECOMPRESS_BEGIN message is sent to a video compression driver for
decompressing data. When the driver receives this message, it should allocate buffers and do
any time-consuming operations so it can process ICM_DECOMPRESS messages efficiently.

Parameters
dwParam1

Specifies a pointer to a BITMAPINFO data structure describing the input format.
dwParam2

Specifies a pointer to a BITMAPINFO data structure describing the output format.

Return Value
Returns ICERR_OK if the specified decompression is supported. Otherwise, returns
ICERR_BADFORMAT indicating that the input or output format is not supported.

Comments
To have the driver decompress data directly to the screen, an application sends the
ICM_DRAW_BEGIN message.

ICM_DECOMPRESS_BEGIN and ICM_DECOMPRESS_END do not nest. If your driver receives
an ICM_DECOMPRESS_BEGIN message before decompression is stopped with
ICM_DECOMPRESS_END, it should restart decompression with new parameters.

ICM_DECOMPRESS_BEGIN
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 333 Windows NT DDK

ICM_DECOMPRESS_END
The ICM_DECOMPRESS_END message is sent to a video decompression driver to have it clean
up after decompressing.

Parameters
dwParam1

Not used.
dwParam2

Not used.

Return Value
Returns ICERR_OK if successful. Otherwise, returns an error number.

Comments
The driver should free any resources allocated for ICM_DECOMPRESS_BEGIN.

ICM_DECOMPRESS_BEGIN and ICM_DECOMPRESS_END do not nest. If your driver receives
ICM_DECOMPRESS_BEGIN before decompression is stopped with ICM_DECOMPRESS_END,
it should restart decompression with new parameters.

ICM_DECOMPRESS_GET_FORMAT
The ICM_DECOMPRESS_GET_FORMAT message is sent to a video decompression driver to
obtain the format of the decompressed data.

Parameters
dwParam1

Specifies a pointer to a BITMAPINFO data structure describing the input format.
dwParam2

Specifies zero or a pointer to a BITMAPINFO data structure used to return the output format.

Return Value
If dwParam2 is zero, the driver returns the size of the output format. If dwParam2 is not zero, the
driver returns a status value (either ICERROR_OK or an error status).

Comments
If dwParam2 is zero, the driver returns only the size of the output format. An application sets
dwParam2 to zero to determine the size of the buffer it needs to allocate.

If dwParam2 is nonzero, the driver should fill the BITMAPINFO data structure with the default
output format corresponding to the input format specified for dwParam1. If the compressor can
produce several different formats, the default format should be the one that preserves the
greatest amount of information.

For example, if a driver can produce either 24-bit full-color images or 8-bit gray-scale images, the
default should be 24-bit images. This ensures the highest possible image quality if the video data
must be edited and recompressed.

ICM_DECOMPRESS_GET_PALETTE
The ICM_DECOMPRESS_GET_PALETTE message is sent to a video decompression driver to
obtain the color table of the output BITMAPINFOHEADER structure.

Parameters
dwParam1

Specifies a pointer to a BITMAPINFOHEADER data structure indicating the input format.
dwParam2

Specifies zero or a pointer to a BITMAPINFOHEADER data structure used to return the color

ICM_DECOMPRESS_GET_PALETTE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 334 Windows NT DDK

table. The space reserved for the color table is always at least 256 colors.

Return Value
Returns the size of the output format or an error code.

Comments
If dwParam2 is zero, the driver returns only the size of the output format. Applications specify
zero to determine the size of the output format.

If dwParam2 is nonzero, the driver sets the biClrUsed member of the BITMAPINFOHEADER
data structure to the number of colors in the color table. The driver fills the bmiColors members
of the BITMAPINFO data structure with the actual colors.

The driver should support this message only if it uses a palette other than the one specified in the
input format.

ICM_DECOMPRESS_QUERY
The ICM_DECOMPRESS_QUERY message is sent to a video compression driver to determine if
the driver can decompress a specific input format, or if it can decompress the input format to a
specific output format.

Parameters
dwParam1

Specifies a pointer to a BITMAPINFO structure describing the input format.
dwParam2

Specifies zero or a pointer to a BITMAPINFO structure used to return the output format. Zero
indicates that any output format is acceptable.

Return Value
Returns ICERR_OK if the specified decompression is supported. Otherwise returns
ICERR_BADFORMAT, indicating that the input or output format is not supported.

ICM_DECOMPRESS_SET_PALETTE
The ICM_DECOMPRESS_SET_PALETTE message specifies a palette for a video
decompression driver to use if it is decompressing to a format that uses a palette.

Parameters
DwParam1

Address of a BITMAPINFOHEADER structure whose color table contains the colors that should
be used if possible. If zero, use the default set of output colors.

DwParam2
Not used.

Return Values
Returns ICERR_OK if the decompression driver can precisely decompress images to the
suggested palette using the set of colors as they are arranged in the palette. Returns
ICERR_UNSUPPORTED otherwise.

Comments
This message should not affect decompression already in progress; rather, colors passed using
this message should be returned in response to future ICM_DECOMPRESS_GET_FORMAT and
ICM_DECOMPRESS_GET_PALETTE messages. Colors are sent back to the decompression
driver in a future ICM_DECOMPRESS_BEGIN message.

This message is used primarily when a driver decompresses images to the screen and another
application that uses a palette is in the foreground, forcing the decompression driver to adapt to a
foreign set of colors.

ICM_DECOMPRESSEX
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 335 Windows NT DDK

The ICM_DECOMPRESSEX message is sent to a video compression driver to decompress a
frame of data directly to the screen, decompress to an upside-down DIB, or decompress images
described with source and destination rectangles. This message is similar to
ICM_DECOMPRESS, except that it uses the ICDECOMPRESSEX structure to decompression
information.

Parameters
dwParam1

Specifies a pointer to an ICDECOMPRESSEX structure.
dwParam2

Specifies the size of the ICDECOMPRESSEX structure.

Return Value
Returns ICERR_OK if successful. Otherwise, returns an error number.

Comments
If the driver is to decompress data directly to the screen instead of a buffer, it receives the
ICM_DRAW message.

The driver should return an error if this message is received before the
ICM_DECOMPRESSEX_BEGIN message.

ICM_DECOMPRESSEX_BEGIN
The ICM_DECOMPRESSEX_BEGIN message is sent to a video compression driver for
decompressing data. When the driver receives this message, it should allocate buffers and do
any time-consuming operations so that it can process ICM_DECOMPRESSEX messages
efficiently.

Parameters
dwParam1

Specifies a pointer to an ICDECOMPRESSEX data structure describing the input and output
formats.

dwParam2
Specifies the size of an ICDECOMPRESSEX data structure.

Return Value
Returns ICERR_OK if the specified decompression is supported. Otherwise returns
ICERR_BADFORMAT, indicating that the input or output format is not supported.

Comments
To have the driver decompress data directly to the screen, an application sends the
ICM_DRAW_BEGIN message.

The ICM_DECOMPRESSEX_BEGIN and ICM_DECOMPRESSEX_END messages do not nest. If
your driver receives an ICM_DECOMPRESSEX_BEGIN message before decompression is
stopped with ICM_DECOMPRESSEX_END, it should restart decompression with new parameters.

ICM_DECOMPRESSEX_END
The ICM_DECOMPRESSEX_END message is sent to a video decompression driver to have it
clean up after decompressing.

Parameters
dwParam1

Not used.
dwParam2

ICM_DECOMPRESSEX_END
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 336 Windows NT DDK

Not used.

Return Value
Returns ICERR_OK if successful. Otherwise, returns an error number.

Comments
The driver should free any resources allocated for ICM_DECOMPRESSEX_BEGIN.

The ICM_DECOMPRESSEX_BEGIN and ICM_DECOMPRESSEX_END messages do not nest. If
your driver receives ICM_DECOMPRESSEX_BEGIN before decompression is stopped with
ICM_DECOMPRESSEX_END, it should restart decompression with new parameters.

ICM_DECOMPRESSEX_QUERY
The ICM_DECOMPRESSEX_QUERY message is sent to a video compression driver to
determine if the driver can decompress a specific input format, or if it can decompress the input
format to a specific output format.

Parameters
dwParam1

Specifies a pointer to an ICDECOMPRESSEX structure describing the input format.
dwParam2

Specifies zero or a pointer to an ICDECOMPRESSEX structure used to return the output
format. Zero indicates that any output format is acceptable.

Return Value
Returns ICERR_OK if the specified decompression is supported. Otherwise, returns
ICERR_BADFORMAT indicating that the input or output format is not supported.

ICM_DRAW
The ICM_DRAW message is sent to a rendering driver to decompress a frame of data and draw it
to the screen.

Parameters
dwParam1

Specifies a pointer to an ICDRAW structure.
dwParam2

Specifies the size of the ICDRAW structure.

Return Value
Returns ICERR_OK if successful. Otherwise, returns an error number.

Comments
If the ICDRAW_UPDATE flag is set in the dwFlags member of the ICDRAW data structure, the
area of the screen used for drawing is invalid and needs to be updated. This depends on the
contents of dwFlags.

If the ICDRAW_UPDATE flag is set and dwFlags is NULL, the driver should update the entire
destination rectangle with the current image. If the driver does not keep an offscreen image, it can
fail this message.

If the ICDRAW_UPDATE flag is set and dwFlags is nonNULL, the driver should draw the data
and make sure the entire destination is updated. If the driver does not keep an offscreen image, it
can fail this message.

If the ICDRAW_HURRYUP flag is set in the dwFlags member, the calling application is
requesting the driver to proceed as quickly as possible, possibly not even updating the screen.

If the ICDRAW_PREROLL flag is set in the dwFlags member, this video frame is merely
preliminary information and should not be displayed, if possible. For instance, if play is to start

ICM_DRAW
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 337 Windows NT DDK

from frame 10, and frame 0 is the nearest previous key frame, frames 0 through 9 will have the
ICDRAW_PREROLL flag set.

If the driver is to decompress data into a buffer instead of drawing directly to the screen,
ICM_DECOMPRESS is sent instead.

ICM_DRAW_BEGIN
The ICM_DRAW_BEGIN message is sent to a rendering driver to prepare it for drawing data.

Parameters
dwParam1

Specifies a pointer to an ICDRAWBEGIN data structure describing the input format.
dwParam2

Specifies the size of the ICDRAWBEGIN data structure describing the input format.

Return Value
Returns ICERR_OK if the driver supports drawing the data to the screen in the manner and
format specified. Otherwise, returns ICERR_BADFORMAT if the input or output format is not
supported, or ICERR_NOTSUPPORTED if the message is not supported.

Comments
If the driver is to decompress data into a buffer instead of drawing directly to the screen,
ICM_DECOMPRESS_BEGIN is sent rather than this one.

If the driver does not support drawing directly to the screen, it should return
ICERR_NOTSUPPORTED.

The ICM_DRAW_BEGIN and ICM_DRAW_END messages do not nest. If your driver receives
ICM_DRAW_BEGIN before decompression is stopped with ICM_DRAW_END, it should restart
decompression with new parameters.

ICM_DRAW_CHANGEPALETTE
The ICM_DRAW_CHANGEPALETTE message is sent to a rendering driver if the palette of the
movie is changing.

Parameters
dwParam1

Points to a BITMAPINFO structure that contains the new format and optional color table.
dwParam2

Not used. Set to zero.

Return Value
Returns ICERR_OK if successful.

Comments
This message should be supported by installable rendering handlers if they draw palettized DIBs.

ICM_DRAW_END
The ICM_DRAW_END message is sent to rendering drivers to clean up after decompressing an
image to the screen.

Parameters
dwParam1

Not used.
dwParam2

Not used.

ICM_DRAW_END
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 338 Windows NT DDK

Return Value
Returns ICERR_OK if successful. Otherwise, returns an error number.

Comments
The ICM_DRAW_BEGIN and ICM_DRAW_END messages do not nest. If your driver receives
ICM_DRAW_BEGIN before decompression is stopped with ICM_DRAW_END, it should restart
decompression with new parameters.

ICM_DRAW_FLUSH
The ICM_DRAW_FLUSH message is sent to a rendering driver to flush any frames that are
waiting to be drawn.

Parameters
dwParam1

Not used.
dwParam2

Not used.

Return Value
None.

Comments
This message is used only by hardware that does its own asynchronous decompression, timing,
and drawing.

ICM_DRAW_GET_PALETTE
The ICM_DRAW_GET_PALETTE message is sent to a rendering driver to obtain a palette.

Parameters
dwParam1

Not used.
dwParam2

Not used.

Return Value
The driver should return a palette handle. It should return NULL or IC_UNSUPPORTED if it
doesn't have a handle to return.

ICM_DRAW_GETTIME
The ICM_DRAW_GETTIME message is sent to a rendering driver to obtain the current value of
its internal clock if it is handling the timing of drawing frames.

Parameters
dwParam1

Specifies a pointer to a LONG data type used to return the current time. The return value
should be specified in samples. This corresponds to frames for video.

dwParam2
Not used.

Return Value
Returns ICERR_OK if successful.

Comments
This message is generally only supported by hardware that does its own asynchronous
decompression, timing, and drawing. The message will also be sent only if the hardware is being

ICM_DRAW_GETTIME
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 339 Windows NT DDK

used as the synchronization master.

ICM_DRAW_QUERY
The ICM_DRAW_QUERY message is sent to a rendering driver to determine if it can render data
in a specific format.

Parameters
dwParam1

Specifies a pointer to a BITMAPINFO structure describing the input format.
dwParam2

Not used.

Return Value
Returns ICERR_OK if the driver can render data in the specified format. Otherwise, returns
ICERR_BADFORMAT indicating that the format is not supported.

Comments
This message asks if the driver recognizes the format for drawing operations. The
ICM_DRAW_BEGIN message determines if the driver can draw the data.

ICM_DRAW_REALIZE
The ICM_DRAW_REALIZE message is sent to a rendering driver to realize its palette used while
drawing.

Parameters
dwParam1

Specifies a handle to the display context used to realize the palette.
dwParam2

Specifies TRUE if the palette is to be realized in the background. Specifies FALSE if the
palette is to be realized in the foreground.

Return Value
Returns ICERR_OK if the palette is realized. If this message is not supported, the driver returns
ICERR_UNSUPPORTED.

Comments
Drivers need to respond to this message only if the drawing palette is different from the
decompressed palette.

If this message is not supported, the palette associated with the decompressed data is realized.

ICM_DRAW_RENDERBUFFER
The ICM_DRAW_RENDERBUFFER message is sent to a rendering driver to draw the frames
that have been passed to it.

Parameters
dwParam1

Not used.
dwParam2

Not used.

Return Value
None.

Comments

ICM_DRAW_RENDERBUFFER
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 340 Windows NT DDK

This message is typically used to perform a "seek" operation when, rather than playing a
sequence of video frames, the driver must be specifically instructed to display each video frame
passed to it.

This message is used only by hardware that does its own asynchronous decompression, timing,
and drawing.

ICM_DRAW_SETTIME
The ICM_DRAW_SETTIME message is sent to a rendering driver to inform it of what frame it
should be drawing if it is handling the timing of drawing frames.

Parameters
dwParam1

Specifies a LONG data type containing the sample number corresponding to the frame the
driver should be rendering. The value will be specified in samples. This corresponds to frames
for video.

dwParam2
Not used.

Return Value
Returns ICERR_OK if successful.

Comments
This message is generally only supported by hardware that does its own asynchronous
decompression, timing, and drawing. The message will only be sent if the hardware is not being
used as the synchronization master.

Typically, the driver will compare the specified "correct" value with its internal clock, and take
actions to synchronize the two if the difference is significant.

ICM_DRAW_START
The ICM_DRAW_START message is sent to a rendering driver to start its internal clock for the
timing of drawing frames.

Parameters
dwParam1

Not used.
dwParam2

Not used.

Return Value
None.

Comments
This message is used only by hardware that does its own asynchronous decompression, timing,
and drawing.

When it receives this message, the driver should start rendering data at the rate specified with
ICM_DRAW_BEGIN.

The ICM_DRAW_START and ICM_DRAW_STOP messages do not nest. If your driver receives
ICM_DRAW_START before rendering is stopped with ICM_DRAW_STOP, it should restart
rendering with new parameters.

ICM_DRAW_START_PLAY
The ICM_DRAW_START_PLAY message provides the start and end times of a play operation to
a rendering driver.

ICM_DRAW_START_PLAY
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 341 Windows NT DDK

Parameters
dwParam1

Start time.
dwParam2

End time.

 Return Values
This message does not return a value.

Comments
This message precedes any frame data sent to the rendering driver.

Units for lFrom and lTo are specified with the ICM_DRAW_BEGIN message. For video data this
is normally a frame number. For more information about the playback rate, see the dwRate and
dwScale members of the ICDRAWBEGIN structure.

If the end time is less than the start time, the playback direction is reversed.

ICM_DRAW_STOP
The ICM_DRAW_STOP message is sent to a rendering driver to stop its internal clock for the
timing of drawing frames.

Parameters
dwParam1

Not used.
dwParam2

Not used.

Return Value
None.

Comments
This message is used only by hardware that does its own asynchronous decompression, timing,
and drawing.

The ICM_DRAW_STOP and ICM_DRAW_START messages do not nest. If your driver receives
ICM_DRAW_START before rendering is stopped with ICM_DRAW_STOP, it should restart
rendering with new parameters.

ICM_DRAW_STOP_PLAY
The ICM_DRAW_STOP_PLAY message notifies a rendering driver when a play operation is
complete.

Parameters
dwParam1

Not used.
dwParam2

Not used.

Return Value

This message does not return a value.

Remarks

This message is used when the play operation is complete. The ICM_DRAW_STOP message is
used to end timing.

ICM_DRAW_SUGGESTFORMAT
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 342 Windows NT DDK

The ICM_DRAW_SUGGESTFORMAT message is sent to a rendering driver to have it suggest a
decompressed format that it can draw.

Parameters
dwParam1

Specifies a pointer to an ICDRAWSUGGEST data structure.
dwParam2

Specifies the size of the ICDRAWSUGGEST data structure.

Return Value
Returns ICERR_OK if successful. If lpbiSuggest is NULL, returns the amount of memory to hold
the format that would have been suggested.

Comments
The driver should examine the format specified in the lpbiIn member of the ICDRAWSUGGEST
structure and use the lpbiSuggest member to return a format it can draw. The returned format
should be as similar as possible to the input format.

For example, if the driver can draw only 8 or 16-bit RGB data, and the input format is
320-by-240-by-16-bit MSVideo1 compressed data, the renderer suggests the
320-by-240-by-16-bit RGB format.

Optionally, the driver can use the installable compressor handle passed in hicDecompressor to
make more complex selections. For example, if the input format is 24-bit JPEG data, a renderer
could query the compressor to find out if it can decompress to a YUV format (which might be
drawn more efficiently) before selecting the format to suggest.

ICM_DRAW_WINDOW
The ICM_DRAW_WINDOW message is sent to a rendering driver when the window specified for
ICM_DRAW_BEGIN has moved, or has become totally obscured. This message is used by
overlay drivers so they can draw when the window is obscured or moved.

Parameters
dwParam1

Points to the destination rectangle in screen coordinates. If dwParam1 points to an empty
rectangle, drawing should be turned off.

dwParam2
Not used.

Return Value
Returns ICERR_OK if successful.

Comments
This message is only supported by hardware that does its own asynchronous decompression,
timing, and drawing.

The rectangle is empty if the window is totally hidden by other windows. Drivers should turn off
overlay hardware when the rectangle is empty.

ICM_GET
The ICM_GET message retrieves a buffer of driver-defined status information from a video
compression driver.

Parameters
dwParam

Address of a block of memory to be filled with driver-defined status information. If NULL, the

ICM_GET
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 343 Windows NT DDK

driver should return the amount of memory required by the driver information.
DwParam2

Size, in bytes, of the block of memory.

Return Value
Returns the amount of memory, in bytes, required to store the status information.

Comments
The structure used to represent status information is driver-specific and defined by the driver.

ICM_GETBUFFERSWANTED
The ICM_GETBUFFERSWANTED message is sent to a video compression driver to have it
return information about how many samples the driver will pre-buffer.

Parameters
dwParam1

Specifies a pointer to a DWORD. The driver uses the DWORD to return the number of
samples it needs to get in advance of when they will be presented.

dwParam2
Not used.

Return Value
Returns ICERR_OK if successful. Otherwise, returns ICERR_UNSUPPORTED.

Comments
Typically, this message is only used by a driver that uses hardware to render data and must
ensure hardware pipelines remain full. For example, if a driver controls a video decompression
board that can hold ten frames of video, it could return ten for this message. This instructs an
application to try and stay ten frames ahead of the frame it currently needs.

ICM_GETDEFAULTKEYFRAMERATE
The ICM_GETDEFAULTKEYFRAMERATE message is sent to a video compression driver to
obtain its default (or preferred) key frame spacing.

Parameters
dwParam1

Specifies a pointer to a DWORD used to return the preferred key frame spacing.
dwParam2

Not used.

Return Value
Returns ICERR_OK if the driver supports this message. Otherwise, returns
ICERR_UNSUPPORTED.

ICM_GETDEFAULTQUALITY
The ICM_GETDEFAULTQUALITY message is sent to a video compression driver to obtain its
default quality setting.

Parameters
dwParam1

Specifies a pointer to a DWORD used to return the default quality value.
dwParam2

Not used.

Return Value

ICM_GETDEFAULTQUALITY
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 344 Windows NT DDK

Returns ICERR_OK if the driver supports this message. If not, returns ICERR_UNSUPPORTED.

Comments
Quality values range from 0 through 10,000.

ICM_GETINFO
The ICM_GETINFO message is set to a video compression driver to have it return information
describing the driver.

Parameters
dwParam1

Specifies a pointer to an ICINFO data structure used to return information.
dwParam2

Specifies the size of the ICINFO data structure.

Return Value
Returns the size of the ICINFO data structure, or zero if an error occurs.

Comments
Typically, this message is sent by applications to display a list of the installed compressors.

The driver should fill in all members of the ICINFO structure except the szDriver member.

ICM_GETQUALITY
The ICM_GETQUALITY message is sent to a video compression driver to obtain its current
quality setting.

Parameters
dwParam1

Specifies a pointer to a DWORD used to return the current quality value.
dwParam2

Not used.

Return Value
Returns ICERR_OK if the driver supports this message. If not, returns ICERR_UNSUPPORTED.

Comments
Quality values range from 0 through 10,000.

ICM_GETSTATE
The ICM_GETSTATE message is sent to a video compression driver to have it fill a block of
memory describing the compressor's current configuration.

Parameters
dwParam1

Specifies a pointer to a block of memory to be filled with the current state, or NULL. If NULL,
return the amount of memory required by the state information.

dwParam2
Specifies the size of the block of memory.

Return Value
If dwParam1 is NULL, the driver returns the size of the configuration information. If dwParam1 is
not NULL, and the value received in dwParam2 is less than size of the configuration information,
the driver returns zero. Otherwise the driver returns the size of the information it returns in the
structure supplied by dwParam1.

ICM_GETSTATE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 345 Windows NT DDK

Comments
Client applications send this message with dwParam1 set to NULL to determine the size of the
memory block required for obtaining the state information.

The data structure used to represent state information is driver-specific and is defined by the
driver.

ICM_SET_STATUS_PROC
The ICM_SET_STATUS_PROC message is periodically sent to an application's status callback
function during lengthy operations.

Parameters
dwParam1

Specifies a pointer to an ICSETSTATUSPROC structure.
dwParam2

Specifies the size of the ICSETSTATUSPROC data structure.

Return Value
Returns ICERR_OK if successful.

Comments
Support of this function is optional but highly recommended if compression or decompression
takes longer than approximately one tenth of one second.

ICM_SETQUALITY
The ICM_SETQUALITY message is sent to a video compression driver to set the quality level for
compression.

Parameters
dwParam1

Specifies the new quality value.
dwParam2

Not used.

Return Value
Returns ICERR_OK if the driver supports this message. If not, returns ICERR_UNSUPPORTED.

Comments
Quality values range from 0 through 10,000.

ICM_SETSTATE
The ICM_SETSTATE message is sent to a video compression driver to set the state of the
compressor.

Parameters
dwParam1

Specifies a pointer to a block of memory containing configuration data, or NULL. If NULL, the
driver should return to its default state.

dwParam2
Specifies the size of the block of memory.

Return Value
Returns the number of bytes actually used by the compressor. A return value of zero generally
indicates an error.

ICM_SETSTATE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 346 Windows NT DDK

Comments
Because the information used by ICM_SETSTATE is private and specific to a given compressor,
client applications should use this message only to restore information previously obtained with
the ICM_GETSTATE message.

Callback Functions, Compression Drivers
The following topics describe the callback functions used by compression drivers.

Status
LONG Status(LPARAM lParam, UINT message, LONG l);

This is the prototype for a status function used by the ICM_SET_STATUS_PROC message.

Parameters
lParam

Contains the constant specified with the status callback address.
message

Specifies one of the following values:
Value Meaning
ICSTATUS_START Indicates a lengthy operation is starting.
ICSTATUS_STATUS Indicates the operation is proceeding, and is l percent done.
ICSTATUS_END Indicates a lengthy operation is finishing.
ICSTATUS_YIELD Indicates a lengthy operation is proceeding. Essentially, this is

just the same as ICSTATUS_STATUS without a specific
percentage value.

l
Message-specific data.

Return Value
Returns zero if processing should continue, or a nonzero value if it should end.

Structures, Compression Drivers
The following topics describe the structures used by compression drivers.

ICCOMPRESS
typedef struct {
 DWORD dwFlags;
 LPBITMAPINFOHEADER lpbiOutput;
 LPVOID lpOutput;
 LPBITMAPINFOHEADER lpbiInput;
 LPVOID lpInput;
 LPDWORD lpckid;
 LPDWORD lpdwFlags;
 LONG lFrameNum;
 DWORD dwFrameSize;
 DWORD dwQuality;
 LPBITMAPINFOHEADER lpbiPrev;
 LPVOID lpPrev;
} ICCOMPRESS;

The ICCOMPRESS structure is used with the ICM_COMPRESS message to specify compression

ICCOMPRESS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 347 Windows NT DDK

parameters.

Members
dwFlags

Specifies flags used for compression. At present, only the ICCOMPRESS_KEYFRAME flag is
defined and indicates that the input data should be treated as a key frame.

lpbiOutput
Specifies a pointer to a BITMAPINFOHEADER structure containing the output (compressed)
format. The biSizeImage member of the BITMAPINFOHEADER structure must be filled in with
the size of the compressed data.

lpOutput
Specifies a pointer to the buffer where the driver should write the compressed data.

lpbiInput
Specifies a pointer to a BITMAPINFOHEADER structure containing the input format.

lpInput
Specifies a pointer to the buffer containing input data.

lpckid
Specifies a pointer to a buffer used to return the chunk ID for data in the AVI file.

lpdwFlags
Specifies a pointer to a buffer used to return flags for the AVI index.

lFrameNum
Specifies the frame number of the frame to compress.

dwFrameSize
Specifies zero, or the desired maximum size (in bytes) for compressing this frame.

dwQuality
Specifies the compression quality.

lpbiPrev
Specifies a pointer to a BITMAPINFOHEADER structure containing the format of the previous
frame. Normally, this is the same as the input format.

lpPrev
Specifies a pointer to the buffer containing the previous frame.

ICCOMPRESSFRAMES
typedef struct {
 DWORD dwFlags;
 LPBITMAPINFOHEADER lpbiOutput;
 LPARAM lOutput;
 LPBITMAPINFOHEADER lpbiInput;
 LPARAM lInput;
 LONG lStartFrame;
 LONG lFrameCount;
 LONG lQuality;
 LONG lDataRate;
 LONG lKeyRate;
 DWORD dwRate;
 DWORD dwScale;
 DWORD dwOverheadPerFrame;
 DWORD dwReserved2;
 LONG (CALLBACK* GetData) (LPARAM lInput, LONG lFrame, LPVOID lpBits,
 LONG len);
 LONG (CALLBACK* PutData) (LPARAM lOutput, LONG lFrame, LPVOID lpBits,
 LONG len);
} ICCOMPRESSFRAMES;
The ICCOMPRESSFRAMES structure is used with the ICM_COMPRESS_FRAMES_INFO
message to specify compression parameters.

ICCOMPRESSFRAMES
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 348 Windows NT DDK

dwFlags
Specifies flags used for compression. At present, only the
ICDECOMPRESSFRAMES_PADDING flag is defined and indicates that padding is used with
the frame.

lpbiOutput
Specifies a pointer to a BITMAPINFOHEADER structure containing the output format.

lOutput
Specifies a parameter returned by the function specified by the PutData member.

lpbiInput
Specifies a pointer to a BITMAPINFOHEADER structure containing the input format.

lInput
Specifies a parameter returned by the function specified by the GetData member.

lStartFrame
Specifies the starting frame number to be compressed.

lFrameCount
Specifies the number of frames to compress.

lQuality
Specifies the quality.

lDataRate
Specifies the maximum data rate in bytes per second.

lKeyRate
Specifies the maximum spacing, in frames, between key frames.

dwRate
Specifies the compression rate in an integer format. To obtain the rate in frames-per-second,
divide this value by the value in dwScale.

dwScale
Specifies the value used to scale dwRate to frames-per-second.

dwOverheadPerFrame
Reserved.

dwReserved2
Reserved.

GetData
Specifies the callback function used get frames of data to compress. (Not used.)

PutData
Specifies the callback function used to send frames of compressed data. (Not used.)

ICDECOMPRESS
typedef struct {
 DWORD dwFlags;
 LPBITMAPINFOHEADER lpbiInput;
 LPVOID lpInput;
 LPBITMAPINFOHEADER lpbiOutput;
 LPVOID lpOutput;
 DWORD ckid;
} ICDECOMPRESS;

The ICDECOMPRESS structure is used with the ICM_DECOMPRESS message to specify the
parameters for decompressing the data.

Members
dwFlags

Specifies applicable flags. The following flags are defined:
Flag Meaning
ICDECOMPRESS_HURRYUP Indicates the data is just buffered and not

drawn to the screen. Use this flag for the

ICDECOMPRESS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 349 Windows NT DDK

fastest decompression.
ICDECOMPRESS_UPDATE Indicates the screen is being updated.
ICDECOMPRESS_PREROLL Indicates this frame is not drawn because it is

prior to the point in the movie where play
begins.

ICDECOMPRESS_NULLFRAME Indicates this frame does not have any data,
and the decompressed image should be left
the same.

ICDECOMPRESS_NOTKEYFRAME Indicates that this frame is not a key frame.

lpbiInput
Specifies a pointer to a BITMAPINFOHEADER structure containing the input format.

lpInput
Specifies a pointer to a data buffer containing the input data.

lpbiOutput
Specifies a pointer to a BITMAPINFOHEADER structure containing the output format.

lpOutput
Specifies a pointer to a data buffer where the driver should write the decompressed image.

ckid
Specifies the chunk ID from the AVI file.

ICDECOMPRESSEX
typedef struct {
 DWORD dwFlags;
 LPBITMAPINFOHEADER lpbiSrc;
 LPVOID lpSrc;
 LPBITMAPINFOHEADER lpbiDst;
 LPVOID lpDst;
 int xDst;
 int yDst;
 int dxDst;
 int dyDst;
 int xSrc;
 int ySrc;
 int dxSrc;
 int dySrc;
} ICDECOMPRESSEX;

The ICDECOMPRESSEX structure is used with the ICM_DECOMPRESSEX message to specify
the parameters for decompressing the data.

Members
dwFlags

Specifies applicable flags. The following flags are defined:
Flag Meaning
ICDECOMPRESS_HURRYUP Indicates the data is just buffered and not

drawn to the screen. Use this flag for the
fastest decompression.

ICDECOMPRESS_UPDATE Indicates the screen is being updated.
ICDECOMPRESS_PREROLL Indicates this frame will not actually be

drawn, because it is before the point in the
movie where play will start.

ICDECOMPRESS_NULLFRAME Indicates this frame does not have any data,
and the decompressed image should be left
the same.

ICDECOMPRESSEX
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 350 Windows NT DDK

ICDECOMPRESS_NOTKEYFRAME Indicates that this frame is not a key frame.

lpbiSrc
Specifies a pointer to a BITMAPINFOHEADER structure containing the input format.

lpSrc
Specifies a pointer to a data buffer containing the input data.

lpbiDst
Specifies a pointer to a BITMAPINFOHEADER structure containing the output format.

lpDst
Specifies a pointer to a data buffer where the driver should write the decompressed image.

xDst
Specifies the x-coordinate of the destination rectangle within the DIB specified by lpbiDst.

yDst
Specifies the y-coordinate of the destination rectangle.

dxDst
Specifies the width of the destination rectangle.

dyDst
Specifies the height of the destination rectangle.

xSrc
Specifies the x-coordinate of the source rectangle, within the DIB specified by lpbiSrc.

ySrc
Specifies the y-coordinate of the source rectangle.

dxSrc
Specifies the width of the source rectangle.

dySrc
Specifies the height of the source rectangle.

ICDRAW
typedef struct {
 DWORD dwFlags;
 LPVOID lpFormat;
 LPVOID lpData;
 DWORD cbData;
 LONG lTime;
} ICDRAW;

The ICDRAW structure is used with the ICM_DRAW message to specify the parameters for
drawing video data to the screen.

Members
dwFlags

Specifies the flags from the AVI file index. The following flags are defined:
Flag Meaning
ICDRAW_HURRYUP Indicates the data is just buffered and not drawn to the

screen. Use this flag for the fastest decompression.
ICDRAW_UPDATE Indicates the driver should update the screen based on

data previously received. In this case, the lpData
parameter should be ignored.

ICDRAW_PREROLL Indicates that this frame of video occurs before actual
playback should start. For instance, if playback is to
begin on frame 10, and frame 0 is the nearest previous
key frame, frames 0 through 9 are sent to the driver with
the ICDRAW_PREROLL flag set. The driver needs this
data so it can display frame 10 properly, but frames 0

ICDRAW
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 351 Windows NT DDK

through 9 need not be individually displayed.
ICDRAW_NULLFRAME Indicates the previous frame should be repeated.
ICDRAW_NOTKEYFRAME Indicates the image is not a key frame.

lpFormat
Specifies a pointer to a structure containing the data format. For video, this is a
BITMAPINFOHEADER structure.

lpData
Specifies the data to be rendered.

cbData
Specifies the number of bytes of data to be rendered.

lTime
Specifies the time, in samples, when this data should be drawn. For video data, this is usually a
frame number. See dwRate and dwScale of the ICDRAW structure for details.

ICDRAWBEGIN
typedef struct {
 DWORD dwFlags;
 HPALETTE hpal;
 HWND hwnd;
 HDC hdc;
 int xDst;
 int yDst;
 int dxDst;
 int dyDst;
 LPBITMAPINFOHEADER lpbi;
 int xSrc;
 int ySrc;
 int dxSrc;
 int dySrc;
 DWORD dwRate;
 DWORD dwScale;
} ICDRAWBEGIN;

The ICDRAWBEGIN structure is used with the ICM_DRAW_BEGIN message to specify the
parameters used to decompress the data.

Members
dwFlags

Specifies any of the following flags:
Flag Meaning
ICDRAW_QUERY Set when an application must determine if the device driver

can handle the operation. The device driver does not actually
perform the operation.

ICDRAW_FULLSCREEN Indicates the full screen is used to draw the decompressed
data.

ICDRAW_HDC Indicates a window or display context is used to draw the
decompressed data.

ICDRAW_ANIMATE Indicates the palette might be animated.
ICDRAW_CONTINUE Indicates drawing is a continuation of the previous frame.
ICDRAW_MEMORYDC Indicates the display context is offscreen.
ICDRAW_UPDATING Indicates the frame is being updated rather than being played.

hpal
Specifies a handle of the palette used for drawing.

ICDRAWBEGIN
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 352 Windows NT DDK

hwnd
Specifies the handle of the window used for drawing.

hdc
Specifies the handle of the display context used for drawing. If NULL is specified, a display
context to the specified window should be used.

xDst
Specifies the x-position of the destination rectangle.

yDst
Specifies the y-position of the destination rectangle.

dxDst
Specifies the width of the destination rectangle.

dyDst
Specifies the height of the destination rectangle.

lpbi
Specifies a pointer to a BITMAPINFOHEADER data structure containing the input format.

xSrc
Specifies the x-position of the source rectangle.

ySrc
Specifies the y-position of the source rectangle.

dxSrc
Specifies the width of the source rectangle.

dySrc
Specifies the height of the source rectangle.

dwRate
Specifies the decompression rate in an integer format. To obtain the rate in frames-per-second,
divide this value by the value in dwScale.

dwScale
Specifies the value used to scale dwRate to frames-per-second.

ICDRAWSUGGEST
typedef struct {
 DWORD dwFlags;
 LPBITMAPINFOHEADER lpbiIn;
 LPBITMAPINFOHEADER lpbiSuggest;
 int dxSrc;
 int dySrc;
 int dxDst;
 int dyDst;
 HIC hicDecompressor;
} ICDRAWSUGGEST;

The ICDRAWSUGGEST structure is used with the ICM_DRAW_SUGGESTFORMAT message.

Members
dwFlags

Specifies applicable flags. Set this to zero.
lpbiIn

Specifies a pointer to the structure containing the compressed input format.
lpbiSuggest

Specifies a pointer to a buffer used to return the suggested format that the draw device would
like to receive.

dxSrc
Specifies the source width.

dySrc

ICDRAWSUGGEST
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 353 Windows NT DDK

Specifies the source height.
dxDst

Specifies the destination width.
dyDst

Specifies the destination height.
hicDecompressor

Specifies a decompressor that can work with the format of data in lpbiIn.

ICINFO
typedef struct {
 DWORD dwSize;
 DWORD fccType;
 DWORD fccHandler;
 DWORD dwFlags;
 DWORD dwVersion;
 DWORD dwVersionICM;
 char szName[16];
 char szDescription[128];
 char szDriver[128];
} ICINFO;

The ICINFO structure is filled by a video compression driver when it receives the ICM_GETINFO
message.

Members
dwSize

Should be set to the size of the ICINFO structure.
fccType

Specifies a four-character code representing the type of stream being compressed or
decompressed. Set this to 'vidc' for video streams.

fccHandler
Specifies a four-character code identifying a specific compressor.

dwFlags
Specifies any flags. The following flags are defined for video compressors:

Flag Meaning
VIDCF_QUALITY Indicates the driver supports quality values.
VIDCF_CRUNCH Indicates the driver supports crunching to a frame

size.
VIDCF_TEMPORAL Indicates the driver supports interframe

compression.
VIDCF_DRAW Indicates the driver supports drawing.
VIDCF_FASTTEMPORALC Indicates the driver can do temporal compression

and doesn't need the previous frame.
VIDCF_FASTTEMPORALD Indicates the driver can do temporal

decompression and doesn't need the previous
frame.

VIDCF_COMPRESSFRAMES Indicates the driver wants the "compress all
frames" message.

dwVersion
Specifies the version number of the driver.

dwVersionICM
Specifies the version of the ICM supported by this driver; it should be set to ICVERSION.

szName[16]

ICINFO
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 354 Windows NT DDK

Specifies the short name for the compressor. The name in the zero-terminated string should be
suitable for use in list boxes.

szDescription[128]
Specifies a zero-terminated string containing the long name for the compressor.

szDriver[128]
Specifies a zero-terminated string for the module that contains the driver. Typically, a driver
will not need to fill this out.

ICOPEN
typedef struct {

DWORD dwSize;
DWORD fccType;
DWORD fccHandler;
DWORD dwVersion;
DWORD dwFlags;
DWORD dwError;
LPVOID pV1Reserved;
LPVOID pV2Reserved;
DWORD dnDevNode;

} ICOPEN;
The ICOPEN structure is sent to a video compression or decompression driver with the
DRV_OPEN message.

Members
dwSize

Specifies the size of the structure.
fccType

Specifies a four-character code representing the type of stream being compressed or
decompressed. For video streams, this should be 'vidc'.

fccHandler
Specifies a four-character code identifying a specific compressor.

dwVersion
Specifies the version of the installable driver interface used to open the driver.

dwFlags
Contains flags indicating why the driver is opened. The following flags are defined:

Flag Meaning
ICMODE_COMPRESS The driver is opened to compress data.
ICMODE_DECOMPRESS The driver is opened to decompress data.
ICMODE_QUERY The driver is opened for informational

purposes rather than for actual compression.
ICMODE_DRAW The device driver is opened to decompress

data directly to hardware.

dwError
Specifies error return values.

pV1Reserved
Reserved.

pV2Reserved
Reserved.

dnDevNode
Device node for Plug and Play devices.

Comments
This structure is the same as that passed to video-capture drivers when they are opened. This lets
a single installable driver function as either an installable compressor or a video-capture device.

ICOPEN
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 355 Windows NT DDK

By examining the fccType member of the ICOPEN structure, the driver can determine its
function. For example, an fccType value of 'vidc' indicates that it is opened as an installable
video compressor.

ICSETSTATUSPROC
typedef struct {
 DWORD dwFlags;
 LPARAM lParam;
 LONG (CALLBACK *Status) (LPARAM lParam, UINT message, LONG l);
} ICSETSTATUSPROC;

The ICSETSTATUSPROC structure is used with the ICM_SET_STATUS_PROC message.

Members
dwFlags

Specifies applicable flags. Set this to zero.
lParam

Specifies a constant passed to the status procedure when it is called.
Status

Specifies a pointer to the status function. This is NULL if status messages should not be sent.

Joystick Drivers
The joystick is an input device that provides absolute position information. It is an additional
supported input device and not a replacement for the mouse. For this chapter, the term joystick
refers to any absolute position device; for example, a light pen, a digitizing tablet, and a touch
screen could all use the joystick driver interface.

All joystick function calls are routed through the WINMM module. WINMM loads the joystick
driver and passes application requests to it. The joystick driver must handle the standard tasks
handled by all installable drivers, as well as the following joystick-specific tasks:

• Returning the device's button configuration and movement range
• Returning position and button-press information
• Accepting calibration values and adjusting position information accordingly

The joystick driver interface enables a driver to handle one or two devices. Each device can have
one to three axes and one to four buttons. The joystick interface accommodates both analog and
digital devices.

Note: Providing drivers for non-interrupt, analog joysticks under Windows NT is difficult because
the device polling required by such drivers is incompatible with NT's operation. The use of digital
joysticks is recommended.

Writing a Joystick Driver
A joystick driver must include the standard DriverProc entry point function. This function handles
the standard and joystick-specific messages sent by WINMM.

For joystick messages, the hDriver parameter contains a handle to the driver and the dwDriverID
parameter contains the driver ID created by the driver.

Handling Joystick Driver Errors
The following list summarizes the joystick error codes defined in mmsystem.h:

Handling Joystick Driver Errors
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 356 Windows NT DDK

MMSYSERR_NOERROR
JOYERR_PARMS
JOYERR_NOCANDO
JOYERR_UNPLUGGED

The DRV_OPEN Message
On the DRV_OPEN system message, the lParam2 parameter specifies which device is being
opened. This value is JOYSTICKID1 for the first device and JOYSTICKID2 for the second device.

The value that DriverProc returns for the DRV_OPEN message becomes the dwDriverID
parameter for all subsequent messages sent to the driver. The driver can use this value for any
purpose; for example, to identify a structure containing information about the client.

Joystick-Specific Messages Handled by DriverProc
The DriverProc function for a joystick driver handles the following joystick-specific messages:

JDD_GETDEVCAPS
JDD_GETNUMDEVS
JDD_GETPOS
JDD_GETPOSEX
JDD_SETCALIBRATION

Number of Devices
WINMM sends a JDD_GETNUMDEVS message to the driver to determine how many devices the
driver supports. The lParam1 and lParam2 parameters are not used. In response to the
JDD_GETNUMDEVS message, return the maximum number of devices supported by the driver.

The driver should return the number of supported devices, which is not necessarily the same as
the number of connected devices. This allows a user to connect a device after the driver has
been loaded. The joystick interface provides a JOYERR_UNPLUGGED error value that a driver
should return when an application polls an unplugged device.

Device Capability Information
The JDD_GETDEVCAPS message requests information about the coordinate range and button
configuration of a device. In response to this message, the driver fills in the JOYCAPS structure,
which is described in the Win32 SDK.. (A pointer to it is passed to the lParam1 parameter.) The
JOYCAPS structure contains information that describes the coordinate range, button
configuration, and manufacturer of the device.

The minimum and maximum position values should reflect a set of logical coordinates that is
independent of minute differences between copies of a hardware device. For example, users of
joystick services should always see a full range of logical coordinates returned from a calibrated
joystick. Calibration values should not affect the minimum and maximum values returned by a
driver.

If a hardware device does not support a given axis, return zero values for the minimum and
maximum coordinate values for that axis. For example, a driver for a two-dimensional device
would set the wZmin and wZmax members of the JOYCAPS structure to zero.

Accepting New Calibration Settings
The Joystick application in the Control Panel calculates calibration values for the device. Use the
calibration values to convert the actual values returned by the hardware device to the logical
values expected by the joystick interface. The driver establishes the logical value range in its
response to the JDD_GETDEVCAPS message.

Accepting New Calibration Settings
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 357 Windows NT DDK

The calibration settings consist of base and delta values for each coordinate. The base value
represents the lowest logical value the driver returns; the delta value is the multiplier to use when
converting the actual value returned by the device to a logical value appropriate for the
established value range.

Immediately after WINMM loads the joystick driver, it reads the calibration values from the
registry and sends them to the driver with the JDD_SETCALIBRATION message. WINMM sends
the JDD_SETCALIBRATION message with two JOYCALIBRATE structures (pointers to them are
passed in the lParam1 and lParam2 parameters). The first structure contains the new calibration
settings that the driver should adopt. The driver should fill the second structure with the previous
calibration settings.

Calculation of Calibration Values
To calculate the base and delta calibration values, the Joystick application sets the base value to
0 and the delta values to 1. It then polls the joystick driver while the user holds the joystick at
each corner of the device coordinate space. This produces the actual value range returned by the
device for each coordinate.

After retrieving the coordinate ranges specified by the joyGetDevCaps function, the application
uses the following formulas to calculate new base and delta values.

wDelta = (wTargetMax - wTargetMin) / (wActualMax - wActualMin)
wBase = wActualMin * wDelta - wTargetMin

In the following example, the joystick returns x coordinate values in the range 43 to 345,
compared to a logical value range of 0 to 65535:

wDelta = (65535-0) / (345-43)
 = 216
wBase = 43 * 216 - 0
 = 9288

Providing Position and Button-State Information
The JDD_GETPOS and JDD_GETPOSEX messages request device coordinate and button
information. The driver fills in JOYINFO or JOYINFOEX structure, described in the Win32 SDK,
and passes a pointer to it in the lParam1 parameter.

The coordinate values should be within the range the driver established when responding to the
JDD_GETDEVCAPS message. When calculating the coordinate values, use the base- and
delta-calibration values passed to the driver with the JDD_SETCALIBRATION message.

Messages, Joystick Drivers
The following topics describe the messages used by Win32-based joystick drivers.

JDD_GETDEVCAPS
The JDD_GETDEVCAPS message is sent to get joystick device capability information.

Parameters
LPARAM lParam1

Specifies a pointer to a JOYCAPS structure, which is described in the Win32 SDK. The driver
fills this structure with the capabilities of the device.

LPARAM lParam2
Specifies the size of the structure pointed to by lParam1 in bytes.

Return Value

JDD_GETDEVCAPS
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 358 Windows NT DDK

If JDD_GETDEVCAPS succeeds, it returns MMSYSERR_NOERROR. Otherwise, it returns
JOYERR_PARMS.

Comments
Compare the structure size value passed to lParam2 with the size of the JOYCAPS structure with
which the driver was compiled. If lParam2 is larger than the expected structure size, fill the
remaining with zeros.

If lParam2 is zero, return MMSYSERR_NOERROR without writing anything to the location
specified by lParam1.

JDD_GETNUMDEVS
The JDD_GETNUMDEVS message requests the number of devices supported by the joystick
driver.

Parameters
LPARAM lParam1

Not used.
LPARAM lParam2

Not used.

Return Value
JDD_GETNUMDEVS returns the maximum number of devices supported by the driver. This
value might not match the number of physical devices actually connected to the computer.

JDD_GETPOS
The JDD_GETPOS message is sent to get the current joystick position and button-state
information.

Parameters
LPARAM lParam1

Specifies a pointer to a JOYINFO structure, which is described in the Win32 SDK.
LPARAM lParam2

Not used.

Return Value
If the driver successfully retrieves the information, JDD_GETPOS returns
MMSYSERR_NOERROR. If the joystick is unplugged, JDD-GETPOS returns
JOYERR_UNPLUGGED.

Comments
The coordinate values returned in the JOYINFO structure should be mapped into the coordinate
range identified by the driver. The minimum and maximum values for each axis are defined in the
JOYCAPS structure, which the driver fills out in response to the JDD_GETDEVCAPS message.

JDD_GETPOSEX
The JDD_GETPOSEX message is sent to get the current joystick position and button-state
information.

Parameters
LPARAM lParam1

Specifies a pointer to a JOYINFOEX structure, which is described in the Win32 SDK.
LPARAM lParam2

Not used.

JDD_GETPOSEX
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 359 Windows NT DDK

Return Value
If the driver successfully retrieves the information, JDD_GETPOSEX returns
MMSYSERR_NOERROR. If the joystick is unplugged, JDD_GETPOSEX returns
JOYERR_UNPLUGGED.

Comments
The JDD_GETPOSEX message, along with the JOYINFOEX structure is used to obtain extended
information not available with the JDD_GETPOS message and the JOYINFO structure.

JDD_SETCALIBRATION
The JDD_SETCALIBRATION message requests the driver to set calibration information. The
driver uses the calibration values to map the physical device coordinates to the logical coordinate
range established by the driver.

Parameters
LPARAM lParam1

Specifies a pointer to a JOYCALIBRATE structure containing the new calibration values to
adopt.

LPARAM lParam2
Specifies a pointer to a JOYCALIBRATE structure. The driver should fill this structure with the
existing calibration values.

Return Value
JDD_SETCALIBRATION returns MMSYSERR_NOERROR.

Comments
The calibration settings consist of base and delta values for each coordinate. The base value
represents the lowest logical value the driver returns; the delta value is the multiplier to use when
converting the actual value returned by the device to a logical value appropriate for the
established value range.

Structures, Joystick Drivers
The following topics describe the structures used by Win32-based joystick drivers.

JOYCALIBRATE
typedef struct joycalibrate_tag {
 WORD wXbase;
 WORD wXdelta;
 WORD wYbase;
 WORD wYdelta;
 WORD wZbase;
 WORD wZdelta;
} JOYCALIBRATE;

The JOYCALIBRATE structure contains calibration values for the three axes of an absolute
position device.

Members
wXbase

Specifies a base calibration value for the x axis.
wXdelta

Specifies a delta calibration value for the x axis.
wYbase

JOYCALIBRATE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 360 Windows NT DDK

Specifies a base calibration value for the y axis.
wYdelta

Specifies a delta calibration value for the y axis.
wZbase

Specifies a base calibration value for the z axis.
wZdelta

Specifies a delta calibration value for the z axis.

Comments
Use the base and delta values returned in this structure to convert actual device values to the
logical value range specified by the driver.

The base values represent the lowest logical value that the driver returns for a given axis. The
delta values are multipliers the driver should use when mapping the value returned by the device
into the value range established by the driver.

The following formula is used to calculate the delta values:

Delta = (LogicalMax - LogicalMin) / (DeviceMax - DeviceMin)

The LogicalMax and LogicalMin members represent the maximum and minimum logical
coordinate values for the axis, as defined by the JOYCAPS structure, which is described in the
Win32 SDK. DeviceMax and DeviceMin represent the actual values returned by the device.

The following formula is used to calculate the base values:

Base = (DeviceMin * Delta) - LogicalMin

The DeviceMin member represents the minimum value returned by the device, Delta represents
the delta value calculated using the first formula, and LogicalMin represents the minimum value
returned by the driver (as defined by JOYCAPS).

JOYCALIBRATE
(c) 1992-1996 Microsoft Corporation. All rights reserved.

Multimedia Drivers Page 361 Windows NT DDK

